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ABSTRACT 

The present study was undertaken in an effort to im- 

I prove numerical models for meso-scale and small-scale effects 

which influence global weather and its modification.  Two 

major areas are being studied:  the effects of mountain 

I ranges on energy and momentum transfer, and the transient 

interaction of solar radiation with the earth's atmosphere. 

It is hoped that the results of these studies will lead to 

calculationally inexpensive prescriptions which can be in- 

[ corporated into meso-scale and global-scale atmospheric cir- 

culation codes. 
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NOMENCLATURE for SECTIONS 2-4 

uAt 
Ax 

specific heat at constant pressure 

drag force on the obstacle 

It t7-v 

3u  3v fluid vorticity 

advectivc flux across a boundary 

acceleration of gravity 

dry adiabatic lapse rate ■ g/C 

enthalpy 

maximum value of the grid indice i 

maximum value of the grid indice j 

numerical grid indices 

temperature diffusion constant 

viscous diffusion constant 

latent heat of vaporization for water 

cloud water content 

rain water content 

water production terms 

pressure 

compressibility stream function defined  in 
Eq.   (3.14) 

stream function 

vi 
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Q ■ total water content 

q = water contained as cloud moisture and vapor 

R » gas constant for air 

r ■ relative humidity 

p ■ density 

S « static stability 

s ■ entropy 

T » temperature 

t - time 

L - terminal velocity of water droplet in atmosphere 

V - iu + kw -  total velocity 

u ■ total horizontal velocity 

w ■ vertical velocity 

x ■ horizontal Cartesian coordinate 

z ■ vertical Cartesian coordinate 

C ■ compressibility vorticity function 

ho» ax (pw) 

Vll 
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SUPERSCRIPTS 

' = perturbation quantity 

" = defined by Eq. (3.24) 

n = time step index 

SUBSCRIPTS 

D ■ diameter of vrater droplet 

i,j  ■ numerical grid indices 

o ■ initial spatial distribution Csometimes used 
to indicate a ground level value) 

Vlll 
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NOMENCLATURE for SECTION 5 

mm 

• » 

p 

p 

T 

z 

V 

X 

s 
M 

y 

I.. 

density 

pressure 

temperature 

vertical coordinate 

frequency 

wavelength 

unit vector 

spherical angular coordinates defining u 

cose 

specific intensity of radiation 

radiation source function 

volume extinction coefficient 

B. 

volume absorption coefficient 

a corrected for stimulated emission 

volume scattering coefficient 

Planck function 

v 

h 

k 

scattering phase function 

Planck's constant 

Boltzmann's constant 

scattering angle 

cos8. 

ix 
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NOMENCLATURE for SECTION 5, contd. 

I  ■  azimuthal average of I 

v 

E  ■s  radiation energy density 

F    s    a-component of radiation energy flux a,v 
I 
I 
1 Cp « specific heat of air at constant pressure 

P .   * oß-component of radiation pressure tensor 

F ■ frequency-integrated vertical flux 

$ , D * Rayleigh volume scattering coefficient 
v,K 

j ^v M = M^e voluine scattering coefficient 

j PR = Rayleigh phase function 

P.. M a Mie phase function 

n - index of refraction of air at 760 mm Hg and 15 C s                                     0 

N = number density of air molecules 

N ■ number density of air molecules at 760 mm Hg and 
s 150C 

p = depolarization factor for Rayleigh scattering 

i.»i2 ■ Mie scattering functions 

a =  radius of (spherical) aerosol particle 

m ■  complex indox of refraction 

I n(a)  = probability distribution of aerosol radii 
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NOMENCLATURE for SECTION 5, contd 

N = number density of aerosols aer ' 

a = extinction cross section of a spherical particle 

a ■ scattering cross section of a spherical particle 

ff . ■ absorption cross section of a spherical particle 

S » solar intensity 

A = directional-hemispherical reflectivity 

p ■ bidirectional reflectivity 

fT ■ azimuthal average of p 

e ■ directional emissivity 

T ■ ground (surface) temperature 

jsolar m soiar.5eam part of T^ 

T^i£f - diffuse part of T, 

I. - frequency-averaged I 

v. ■ JJCV. + v.+,)  ■ center of frequency interval 

ßi,Bi,Pi = ßv.
B
v.
p
v evaluated at Vj 

T. ■ transmission function 

A 

S ■ scattering source 

* A 

S. ■ frequency-averaged scattering source 

a^: * moments of P. Hijk n i   Xi 
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1.  INTRODUCTION 

The numerical prediction of the general circulation 

of the atmosphere predates most of the other applications of 

high-speed computers to physical problems. The codes which 

exist at several major research centers have reached levels 

of considerable sophistication. These codes are used to 

solve tine-dependent equations describing atmospheric motion 

in a three-dimensional representation. Parametric descrip- 

tions are included to take into account the effects of inso- 

lation, turbulent transport, and ,isture. For the applica- 

tion to short period forecasts (covering a time interval of 

several days), the physical processes taken into account in 

the codes are quite satisfactory, relying on the kinetic and 

inte/nal energy already in the atmosphere and depending less 

on the utilization of the energy source from insolation. 

For predictions over a longer period of time the pro- 

cesses which transform the solar energy into motion of the 

atmosphere are much more important. The many phenomena which 

affect transfer of energy and moisture through the earth- 

ocean- atmosphere system are incompletely described. Descrip- 

tions of the ocean-air, air-land, and land-ocean interfaces, 

and of the topographic boundary conditions are necessary for 

a qualitatively correct predictive model. 

1.1    OROGRAPHIC EFFECTS ON GLOBAL CLIMATE 

Phenomena taking place on a scale smaller than the 

resolution of global circulation codes can cause changes in 
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climate.  The tropospheric transport coefficients that are 

required in the global atmospheric model may arise from at- 

mospheric motions that occur in quite small regions (e.g., 

mountain lee waves).  Transport is also effected by convec- 

tive eddies such as cumulus and cumulo-nimbus convective 

cells.  These may be influenced by small geographic features 

such as islands and by upper atmospheric phenomena such as 

jet streams and waves. 

The simplest method of accounting for meso-scale phe- 

nomena is to calculate parameters (such as eddy diffusivities) 

according to some fit to experimental data, risking large 

inaccuracies due to incomplete and inappropriate data.  A 

technique which can give more accuracy is to compute these 

parameter« by means of several meso-scale calculations per- 

formed separately, or concurrently with the large scale cal- 

culation.  This permits a more complete description of rele- 

vant physical processes to be built into the global model. 

Present research at Systems, Science and Software (S1) 

concerns the development of a meso-scale code capable of 

studying these phenomena and in presenting calculational re- 

sults which may be incorporated into global scale codes.  The 

basic code, as discussed in this report, is a two-dimensional 

time-dependent code which makes use of the Boussinesq approx- 

imation.  The code is describei in Section 2.  Several test 

calculations have been completed which show the transient 

effects  on the air flow over mountain ranges under various 

atmospheric conditions.  These results are described in 

Section 4.  The momentum transport from the atmosphere to the 

earth is calculated for two cases and these results are also 

discussed. 

Modifications to the code, reported in Section 3, 

include the effects of moisture, variable zoning ir: the 
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vertical direction in order to better describe the atmospheric 

conditions (i.e., inversion layers, etc.) and consideration of 

the compressibility effects of the atmosphere.  The results of 

test calculations using these new codes will be reported in 

the :inal report of this contract. 

1.2    RADIATIVE TRANSFER IN CLIMATOLOGY 

r 
r 
r 
r 
r 
i 

To quantify the sources and sinks of energy in the 

{ atmosphere due to solar and terrestrial radiation as a func- 

tion of location, season, and time is a central problem in 

predictive climatology.  Radiation is the source which strong 
1 ly influences the level of response for all other parts of 

the system.  A number of parameters depend sensitively on the 

solar radiation:  humidity, cloudiness, extent of snow and 

ice, etc, and, in turn, the amount of solar radiation heat- 

ing the air and land depends on them. 

Because of the intrinsic difficulty of the radiative 

transfer calculation, very substantial approximations have 

been made in the descriptions of radiative effects in all 

atmospheric codes. Most calculations of atmospheric radiation 

have been limited to approximations of long-wave cooling. 

Only a few transient calculations have been performed and the 

radiative response of the lower boundary of the atmosphere has 

been very crudely approximated or ignored. 

The development to date of a one-dimensional radiative 

transfer code which will take into account the time-dependent 

modifications in the thermal stratification of the atmosphere 

is described in Section 5.  A one-dimensional boundary layer 

code which describes the basic hydrodynamics of the air flow 

and which will be used to test the radiative transfer code is 

also described.  The radiative transfer code will be capable 

of characterizing the transfer through an atmosphere described 
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by temperature, pressure, humidity, CO* concentration, 0. con- 

centration, and concentrations of other trace constituents 

••       including aerosols. 

In summaiy, ehe two major areas under investigation 

are (1)  he effects of mountain ranges on energy and momentum 

transfer, and (2) the transient interaction of solar radiation 

with the earth's atmosphere. The development of numerical 

models to study these phenomena is described in Sections 2, 

3, and S of this report. A sixth section, describing addi- 

tional objectives to be pursued in connection with these in- 

vestigations is also included. 
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2.  OROGRAPHIC EFFECTS 

The effects of mountain ranges on atmospheric trans- 

port is being investigated using a two-dimensional numerical 

code HAIFA (H/drodynamics in an Almost incompressible Flow 

Approximation). This code calculates time-dependent dynamic 

flow based on the Boussinesq approximation. The description 

of the basic code is contained in this section. The modifi- 

cations to this code to incorporate the effects of moisture 

and compressibility are discussed in Section 3. 

2.1    THE HAIFA EQUATIONS 

The numerical investigation of mountain waves requires 

that the effects of inertia and buoyancy be taken into account. 

The two-dimensional time-dependent Boussinesq equations, devel- 

oped herein, include these effects in the HAIFA computer code. 

The buoyancy effects are due to adiabatic changes of tempera- 

ture induced by perturbations of an initially thermally stra- 

tified atmosphere. Deviations from constancy of the density 

in other terms of the fluid equations, including the continuity 

equation, are neglected, giving a set of equations which are 

basically valid for an incompressible fluid.  The use of the 

Boussinesq equations for the investigation of mountain waves, 

therefore, is appropriate in that the effects of buoyant sta- 

bility is restricted by the incompressibility of the flow. 

These equations, as used in HAIFA, are the vorticity equation 

derived from the two-dimensional equation» of motion, the 
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energy equation, and the continuity equation for an incom- 
pressible fluid. An outline of the derivation of these 

equations follows.  (The symbols used in the equations are 
defined in the Nomenclature list.) 

In the Boussinesq approximation, the momentum equa- 
tions in the horizontal (x) and the vertical (z) directions 

are: 

ar" ■ r£* v,ckvVu)   • (l-l) p
o 

H-'i-fc-f-f^*0 • (72) 

For the present, we have neglected the Coriolis terms in this 

set of equations. 

The incompressible continuity equation in two dimen- 

sions is 

I? ♦IT-0  • (2-J) 

The vorticity equation used in the HAIFA code is derived using 

Eqs. (2.1), (2.2), and (2.3). Eq. (2.1) is differentiated with 

respect to z and Eq. (2.3) with respect to x . Consistent 

with the Boussinesq approximation, the variation of p with 

height is assumed negligible. Subtracting one from the other 

removes the pressure terms. If one also treats the diffusion 

coefficient k  as a constant, the resulting expression is: 
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where n  is defined as the vorticity component perpendicular 

to the x-z plane.  Mathematically, 

5u   3w 

It is farther possible to modify Eq. (2.4) consistent with the 

Boussinesq approximations.  The variables p,  T and p may 

be written as functions of their static values plus a perturba- 

tion contribution as follows: 

p(x,r,t) - p0(z) ♦ p'Cx.z.t)  . 

T(x,z,t) - T0(z) ♦ T'Cx.z.t)  , (2.5) 

p(x,z,t) - p0(z) ♦ p^x.z^t)  . 

The buoyancy term 

1_ |£ 

can then be written as 

1_ |£l 
P. 5x po 

However, for the Boussinesq approximation to be valid, the 

density variation p*  must depend mainly on temperature, 

i.e., the variation of density due to t\t  dynamical pressure 

is assumed negligible (see Appendix A).  Therefore, 
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^ T«  . (2.6) 
o 

Substituting Eq. (2.6) into Eq. (2.4) and using £q. (2.3) to 

allow the result to be written in conservative form, the 

vorticity equation is 

y*}  ♦ fjCun) ♦ ^(wn) - - f- |I1 + kvv
ln .     (2.7) 

Eq. (2.7) is the first of three equations to be solved 

in the HAIFA code. The second equation results from the con- 

tinuity equation and the definition of vorticity. Defining a 

stream function } such that u ■ d^/9z and w ■ -3^/3x, the 
continuity equation is automatically satisfied. Further, the 

stream function is related to the vorticity through a Poisson 

equation of the form 

u 
v2* - n . (2.8) 

* - The final equation necessary tr complete the descrip- 

tion of mountain waves is the energy equation.  This equation 

Li       expresses the first law of thermodynamics 

for an adiabatic system.  For a perfect gas with constant 

specific heat and using the hydrostatic approximation in the 

dp/dt term, this equation may be expressed by 

dT . . l-wg + k^aj  . (2.9) 
P 
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Substituting Eq.   (2.5)   into Eq.   (2.9),  the  resulting energy 
equation  is 

IT 
3T'     .     3     f..v,^     .     3     /•..a..^    _       ..o,, ,      nZTI 

Eqs. (2.7), (2.8) and (2.10) constitute the fluid flow 

equations integrated in the HAIFA code. 

2.2    NUMERICAL APPROXIMATION OF HAIFA EQUATIONS 

Eqs. (2.7), (2.8) and (2.10) are written in finite 

difference form and integrated numerically.  The integration 

is accomplished by updating the equations in time for each 

variable based on the values at the previous time step or an 

intermediate time located between two successive time steps. 

Each of these steps will be discussed in turn in this report. 

These descriptions include the definition of the grid used und 

•ehe  location of each variable listed in the equations, the 

evaluation of the advection terms in the vorticity and energy 

equations, the solution for the stream function from the 

Poisson eq. (2.8), and a discussion of the boundary conditions 

used in the numerical integration. 

2.2.1  Finite Difference Scheme 

The basic scheme used to numerically integrate the 

HAIFA equations is shown in Figure 2.1.  The finite difference 

grid used in HAIFA is shown in Figure 2.2.  The locations of 

the major variables with respect to the grid cells are defined 

in the figure. 
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Initial values of temperature, 
vorticity, and velocities are 

specified. These will be 
available at time tn for the start 

of each succeeding time step. 

Step 1. 

New values of temperature 
and vorticity are obtained 

accounting for the advection 
terms in Eqs. (2.7) and (2.10) only. 

Step 2. 

Temperature and.vorticity are up- 
dated to tine tn  by accounting for 
buoyancy and i'riction terms using 
the intermediate values of T § n 

obtained in Step 2. 

Step 3. 

The Poisson equation is solved 
for ^    using values of n at 

tn+1. 

Step 4. 

Velocities are updated using ty 
values from Step 4.  Initial data for 

a new cycle are now available for 
edit or further calculation be- 

ginning at Step 2. 

Step 5. 

Figure 2.1 - HAIFA Scheme Used in Numerical Integration 
of Eqs. (2.7), (2.8), and (2.10). 

10 
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v, i,j + l 

(n,T) 
^3 

v. . 

-Ax- 

hthlil 
1 

■U.A1 AZ i + l,J 

vi+i,j 

i 

i-l i+1 

Figure 7.2 - HAIFA Finite Difference Grid. 

The stream functions are located at the grid points, the vor- 

ticities and temperatures are cell centered and velocities are 

centered on a grid line located between stream line values. 

In this way, the velocities defined in finite difference form 

are: 

u - a* , »i.in - hj 
ij  ' Tz iz (2.11) 

Vli = 
- .11..  Vl.i - *ii 

dx Ax (2.12) 

11 
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2.2.2  The Advection Scheme 

The advection of temperature and vorticity in HAIFA 

is calculated using either the second or fourth order scheme 

of Crowley.'- '  The selection of the second or fourth order 

scheme is optional and is determined by the trade-off between 

accuracy and computing time.  The schemes chosen are written 

in conservation form and are based on forward time differences 

and centered space differences.  Test calculations performed 

by Crowley indicated that for the same order of accuracy, the 

conservation form produced more accurate solutions than the 

advection form. 

In the conservation form, the time derivative and ad- 

vection terms of the vorticity or temperature equation may be 

written as 

at  5x   Ji C2.13) 

where ^ is either T ' or and S is the source term. 

In two dimensions a splitting technique is used; the 

calculational scheme calls for solving a one-dimensional equa- 

tion twice, i.e., the net flux of vorticity or temperature is 

solved for in the horizontal, the quantity solved for in the 

zone being updated due to this flux and the procedure is then 

repeated in the vertical direction using the partially updated 

values.  The equation for the flux across the boundary  j 

written in finite difference form (second order accurate) is 

where a 
j 

Ax 
It r^j + ♦j-P - r1-^ - ♦j.i) 

u. Ät/Ax 

(2,14) 

12 
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Vhe net change in the variable + in the cell ij due to ad- 
vection in the horizontal is then 

#»*1 . ^ . Al(^ . i^} (2 15) 

I 
The corresponding fourth order scheme for the flux 

across the boundary j is 

a s 

I 
I 

(2.16) 

The numerical stability of these equations is discussed in 
Section 2.3 of this report. The accuracy, as discussed by 
Crowley, is found by expanding the quantities in Taylor series, 
both in time and in space. The result gives the solution of 
the variable $ at the new time accurate to order At2 

in time. The time derivative of the finite difference form 
of the differential equation is thus accurate to order At1 

in time. The second order scheme, Eq. (2.14), has a trun- 

cation of order Ax* and the fourth order scheme, Eq. (2.16), 
is accurate to Axs  in space. 

13 
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2.2.3  Update of Other Teras in the Vorticity and Energy 
Equations 

The vorticity equation has two additional terms besides 

the advective terns.  In general, central differences are used 

in the numerical scheme.  The buoyancy term 

g  3T' 
TT 5ir o 

is expressed as 

T^C1-1-1  • .   t«") 
0J 

The diffusion term k V'n is expressed as 

«"itlj -  ^ij ♦ "i-ljXsM • t»1») 

The energy equation is handled in a similar manner. 

The diffusion term ktV
,T is expressed as in Eq. (2.18) 

with n replaced by T .  The remaining term in the energy 

equation 

-w ?r4 r 

is  calculated using centered quantities.     The  term in 
brackets  is  calculated analytically from input data and the 

14 
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velocity is expressed m  an averaged quantity 

w  . . ♦ w. 

2 

2.2.4  Solution of the Poisson Difference Equation by Finite 
Fourier Transform 

The solution of the Poisson equation by means of 

Fourier transform results in a direct (or exact) solution of 

the difference equations and their boundary values.  In the 

current version of the subroutine there are some limitations 

on the generality of the solution; the spatial interval Ax 

■ust be constant (see Section 3.3 for variable Az). The solu- 

tion aust be periodic in the x-direction and prescribed values 

of the stream function are to be maintained on the top and 

bottom boundaries of the rectangular region.  How the bound- 

ary is modified from the rectangular shape Is discussed in 

the following section. 

A second order finite difference approximation to the 

Poisson equation V1^ ■ n  is obtained by replacing the second 

derivative operator by a centered second difference operator. 

!L!u *! ♦ 1L . 
(Ax)a (Az)2 nij j  ■  2,   ...,  J-l   , 

(2.19) 

where 

and 

«J »tj " »inj ■ »tj ' »i.i,j 

•Jnj • »M»! - 2»ij * »u-i 

l 
15 
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Boundary conditions are imposed as follows: 

At the bottom of the aesh, 

♦i,l " 0i i • 1, ..., I . 

At the top of the mesh. 

♦I,J • ei i • 1,2, ..., I . 

The cyclic boundary conditions in the horizontal are, 

♦oj " n.i    ^ '1J ' ♦mj j • 2, ..., J-l 

We  introduce an orthonormal  base set of  functions having 
cyclic properties on  the  index i: 

'ik '  /Z/I co$ 
2irki I  is  even 

wi,I.k "  ^TTsin 
2irki i •  1,2 I   . 

"i,i • »^ 

w.   j., "  l/ZT cos  i 

k •  1,2  1   . 

These  are  the  finite  Fourier  functions which have  the properties, 

I 

[ 
i-1 
Ew..   w.,   ■  6. . ik     it kt 

16 
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I 
1 and the analogous cyclic boundary conditions are valid in the 

horizontal. They also have the property that they are 

i eigenfunctions of the central second difference operator 

*I "u ■ -*! wik 
I 
I 

where ^k a 2 sin wk/I  . These functions are complete func- 

tions on the interval i - 1,2, ..., I . Consequently, 

an arbitrary function f  on this space can be represented 

i 
I fi • S "k *ik 
1 k-1 

where 

1 

i-1 

We are now ready to consider Eq. (2.19) from the point 

of view of Fourier transformation.  The vorticity and stream 

function are represented as Fourier series as follows: 

J^ 

i. 
n- ■ £ bkj wik    »   where bkj ■ S nij wik • 

k-l i-1 

and (2.20) 

I I 

♦ij ' Z akj Wik   '   Where akj " Z ♦ij Wik  ' 
k-l i-1 
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Substituting into Eq. (2.19) we obtain 

Multiplying by w.   and sunning over i gives 

0 

\     (AX)1   (Al)«/ I1 J* 

j • 2,   ..., J-l , 

i - 1,2, ..*, I . 
(2.21) 

The values of a, ,  and a, ,   , m  ... -   ,, -.>  1,1      J,t required by Eq. (2.21) are 
obtained from the boundary values 

I 

'l.t " S ai Wil   and 
i-1 

I (2.22) 

•j,t " Z) Bi wil • 
i-1 

In Eq. (2.21) the value of the wave number, i,  appears 
only paranetrically.  For each value of I    there is a tri- 
diagonal equation having fixed values at the end points of the 
j-interval. 

We summarize the procedure for obtaining the direct 
solution of the Poisson equation, Eq. (2.19)t by Fourier trans- 

form: 

18 
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(1) the vorticity and the top and bottom boundary 

values of the stream function are subjected to Fourier trans 

formation to obtain 

I 

V " S nij wik • 
i-1 

and 
1    1 L 

i-1 

J,t ' 2-r 0i wil 

(2) The Fourier components of the stream function are 

obtained by solving the tridiagonal system of equations, Eq. 

(2.21), for a.^. 

(3) The stream function itself is obtained by Fourier 

synthesis 

I 

l-l 
ij  ' 1*1  aji WU ' 

The quantity I must be even. In order to take maxi- 

mum advantage of the efficiency of the Fast Fourier Transform, 

the quantity I should also be a power of 2. 
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2.2.5 The FFT Solution of the Poisson Equation Having Non- 
Rectangular Boundaries 

In order to represent a mountain within the computa- 

tional grid it is necessary to depart from rectangular bound- 

aries. A modification of the solution algorithm using the FFT 

is necessary to take account of the specified values of ip on 

the mountain contour.  The procedure for carrying out this 

modification of the direct solution of Poisson's equation on 
f 2") 

an irregular region has been described by Buzbee, et.al.v ' 

We consider the case in which there are p internal 

grid points on which the potential is to be specified.  These 

points constitute the adjacent mesh points lying along the 

boundary of the mountain which will be assigned the same value 

of potential (usually zero)  as the lower boundary.  The first 

step is to precalculate the stream function contribution at 

each of the p points of unit vorticity located at each of 

the points.  The solution is then obtained ^ solving Poisson's 

equation twice for each cycle. First, Poisson's equation is 

solved with arbitrary vorticity on the boundary points.  The 

difference between the obtained and desired values of the 

stream function at e. zh  of the p joints is used to obtain 

the corresponding vorticity increments through application of 

the precalculated matrix. A second solution of Poisson's 

equation using the incremented vorticity field gives the final 

value of the stream function within the calculational region. 

2.2.6 Description of Poisson Solver Routines 

This section describes the subroutines currently used 

in the HAIFA code to solve the Poisson equation in x-z geometry, 

The method of solution employs a Fourier transform in the 

x-direction, solving the resultant set of one-dimensional dif- 

ference equations (one for each wave number) by Gaussian 

20 



r 
r 
r 
r 
i 
i 
i 
i 

3SR-795 

elimination in the z-direction and performing the inverse 

x-direction Fourier transform to obtain the solution.  The 
C3") 

Cooley-Tukey Fai.t Fourier Transform (FFT) technique 

is employed (subroutine COOTUK) with some pre- and post- 

processing of the data for efficient utilization of the al- 

gorithm.  In the current version the dependent variable (the 

stream function \{i in the HAIFA context) is assumed to have 

cyclic boundary conditions in the x-direction and fixed values 

at ehe top and bottom of the grid. 

At the beginning of each new calculation, there are 

references to subroutines which are used only once in each 

problem.  These are called SETUP and OBSET. 

SETUP -- This entry references an internal subroutine SET, 

whose function is to define certain index parameters and re- 

quired data arrays that are used throughout the calculation 

by the Poisson solver. 

OCSET  -- This subroutine is called only when internal boundary 

conditions are to be applied.  Suppose there are p internal 

points required to have stream function values  ^0, il"0, ... i|)°. 

This subroutine computes a p x p matrix C which has the fol- 

lowing property: 

a unit vorticity is placed in the posi- 

tion of internal boundary point j.  The value 

of the independent variable (vorticity) is 

assumed to be zero at every other point.  Thö 

Poisson equation solver XYPOIS (see discus- 

sion below) is called and returns the influ- 

ence of that particular unit vorticity on all 

the other internal boundary points.  These 

influences are put into row j of matrix C. 
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This procedure is continued until all p  in- 

ternal boundary influences have been computed. 

Finally, subroutine OBSET forms and stores 

the inverse matrix C"1. 

The controlling subroutine for the Poisson equation 

solution is named LAPLAC (for the Laplacian symbol 72). 

This routine is responsible for the solution to both standard 

boundary condition cases and problems which include internal 

boundaries. 

Each cycle, subroutine LAPLAC averages the cell- 

centered HAIFA vorticities to provide node-centered vortici- 

ties. Then the Poisson equation solver XYPOIS is called to 

provide the updated values of the stream function.  In the 

case of internal boundaries, one more step is performed in 

subroutine LAPLAC. Upon the first return from solving the 

Poisson equation, each internal boundary has a value  i|>f, 

i«i , ... ,p which in general is not the required value i|<?. 

A ector Lty    of the differences  ^? - ty*  is formed.  Then, 

using the inverse matrix C'1 formed in subroutine OBSET, one 

may compute the required modifications Aq. to the values of 

the independent variable at each of the p internal boundary 

points from 

The independent variable is so modified, and the XYPOIS 

package is called once again.  The solution returned now con- 

tains the correct values for the internal boundary points as 

well as the other grid points.  It remains to discuss the sub 

routine XYPOIS. 
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XYPOIS --  This entry is used every calculational cycle to 

carry out the solution of Poisson's equation.  It contains 

as an argument the values of the inhomogeneous term (here, 

vorticity) in the interior (nodal) points of the grid, and 

the fixed values of the dependent variable (here, the 

stream function) at the top and bottom of the grid.  XYPOIS 

references four internal subroutines: 

(1) FFANL (fast Fourier analyzer), which is respon- 

sible for carrying out the x-direction transform of vorticity 

into Fourier components.  It processes two rows at a time, 

so an uncoupling of the row components is required upon re- 

turn from the FFT routine COOTUK; 

(2) GAUSS, which is responsible for solving the re- 

sulting z-direction tridiagonal equations for the transform 

of the dependent variable (see Section 3.3.1); 

(3) FFSYN (fast Fourier synthesizer), which is the 

inverse of FFANL, is responsible for restoring the Fourier 

components to the new values of the independent variable by 

another call to subroutine COOTUK.  These values, represents 

ing the solution to the Poisson equation, are returned to 

the calling routine (subroutine LAPLAC) in the array contain- 

ing the original argument list; and 

(4) COOTUK, which carries out the Cooley-Tukey fast 

Fourier transform. 

2,3    STABILITY ANALYSIS 

A numerical stability analysis of the advection terms 

in the vorticity and temperature equations has been completed 

by other researchers.  Among them, Crowley ^ ' •' did a complete 

analysis for the scheme presently being used in the HAIFA 

code.  The results obtained by Crowley indicate that both his 
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second and fourth order scheme are stable for all wave num- 

bers if 

uAt 
<  1 

Further, the fourth order conservation scheme being used in 

HAIFA is stable for  (uAt/Ax) <  1.5. 

As indicated by Crowley, the schemes both result in 

amplitude d? ping and phase lag.  For long wavelength dis- 

turbances the damping and phase errors are appreciably smaller 

for the fourth order scheme than for the second order.  Com- 

parison tests with a typical mountain wave problem indicated, 

however, that the differences between fourth and second order 

solutions are not large. Most of our calculations have been 

performed with the second order scheme.  The criterion 

built into the HAIFA code is more stringent than any of those 

noted above, i.e.. 

uAt 
ET < 0.8 

A stability criterion also has been established for 

the diffusion terms, however, in all problems calculated for 

this research, the diffusion coefficients are set to zero and 

thus these terms play no part in the solution. 

One unstable region was found using the above cri- 

teria in computing the uniform velocity problem discussed in 

Section 4.3.  The details of the instability and the new 

criteria developed for that problein are also given in that 

section. 
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2.4    BOUNDARY CONDITIONS 

The initial value problem solved using the HAIFA code 

requires initial temperature, vcrticity and stream function 

distributions. This is accomplished by prescribing a value 

of the stream function which is constant in the horizontal 

direction and which gives the desired horizontal velocity 

distribution as a function of the vertical coordinate. The 

vertical velocity component is set to zero. The vorticity 

at each point in the grid is calculated analytically using 

the definition 

H * «r t since ^ is everywhere zero, 

The temperature distribution is specified as being horizontal 

ly stratified with a lapse rate which may vary with altitude. 

It is also possible to simulate inversions. 

At the beginning of the calculation, with the flow 

already established, an obstacle is placed in the stream by 

setting the lower surface streamline to coincide with the 

mountain surface. A rigid lid (constant streamline) is im- 

posed on the upper boundary of the problem.  Figure 2.3 indi- 

cates these boundary conditions in graphical form. 

The boundary condition imposed at the sides of the 

grid assumes the flow to be cyclic, i.e., the stream function 

at each vertical grid line j on the left side of the grid 

is set equal to the corresponding stream function at the 

right side of the grid.  Mathematically, this can be ex- 

pressed as ij*. . s 4» . ■ . A graphical explanation of this 
ij   n+1, j 

boundary condition is also given in Figure 2.3. 
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♦ ■ constant 

Upper and Lower . . 
Boundary 
Condition    

">»,,.__   _ _ 

constant 
(usually 

zero) 

n-1 Cyclic Boundary 
Condition 

*l'Vl 

Figure 2.3 - Schematic of HAIFA Boundary Conditions 
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One further boundary condition is necessary to obtain 

the transient solution.  The vorticity equation requires that 

the teaperatuie gradient in the x-direction be specified at 

the cell center bounded by the obstacle.  This requires a 

value for the temperature perturbation on the obstacle 

boundary.  The assumption is made that the air immediately 

next to the mountain has risen from the bottom of the grid. 

The temperature of the air alongside the mountain is thus 

given by 

T - T -  T»z m        o 

where 

i  a  f.he temperature along the vertical 
mountain boundaries 

T  •  the temperature at ground level 

r -  the dry adiabatic lapse rate 

z •  the distance above ground level. 

Since the initial temperature profile (T.) is given as 

an analytic function of S, the temperature perturbation along 

the mountain is 

mo i 

Referring to the example oi a two-cell thick mountain in the 

figure below,  ST'/Sx at the cell centers adjacent to the 

obstacle are calculated as 

T! ♦ TJ , 
3Ti _ T; •     2 
dx Ax 
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Ti-I i.!  , M ̂  
VI Ti4 

M M > 
i*l i*2 i*3 i*4 

At cycle zero (time equal to zero), these boundary con 

ditions are then used to determine the new distribution of 

streamlines within the calculational grid.  This completes the 

required information to start the computation. 

2.S    HAIFA CODE DESCRIPTION 

A flow -hart giving the calculational sequence of the 

HAIFA code is displayed in Figure 2.4.  A description of how 

problems are generated and the major subroutines within the 

code is presented below. 
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Figure 2.4 - Flow Diagram of HAIFA Code. 
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2.5.1  Initiating A Calculation 

There are two methods for initiating a calculation: 

generating a new problem, and restarting a partially completed 

calculation from a data tape.  These are controlled by sub- 

routine INPUT. 

Generating a New Problem - Suoroutine INPUT reads all 

input data and sets up several constants which will be used 

in the calculation.  The initial streamline distribution is 

computed from a series of input parameters, MT , DTI , DT2 f 

DT3 , DT4 , and ZETA such that 

♦ (z) - DTI ♦ DT2«zMT ♦ DTJ-z^*1) 

♦ DT4«exp(-ZETA'Z)  . 

These parameters define the horizontal velocity distribu- 

tion 

MT u(2) - yjr - MT'DTZ-z^1'15 ♦ (MT+l)«DT3»z 

- DT4•ZETA«exp(-ZETA«z)  . 

The initial vorticities are found from differentiating the 

above expression with respect to z , i.e., n ■ 3u/3z since 

3vr/3x is everywhere zero at time equal zero. 

The initial temperature distribution is set in a 

similar fashion using the input parameters  KT , ATI , AT2 , 

AT3 , AT4 , and ALPHA. 

T(z) - ATI ♦ AT2'ZKT + AT3*z(KT+1) 

♦ AT4«expC-ALPHA»z)  . 
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Internal Boundaries - The input variable NOBS defines 

the number of internal points which are to have fixed svream- 

function values. A series of data cards specifying the grid 

points and the associated if» values are read if NOBS > 0 . 

Such internal boundary points are used to define grid 

obstacles, which are outlined by a series of connected points. 

Typically, the fixed value of i{i assigned to the obstacle 

points is the lower boundary streamfunction value. The re- 

quested initialization of the streamfunction, vorticities, and 

velocities in the case of internal boundaries is handled by 

subroutine OBSET. 

Restarting A Calculation — The option to restart a 

calculation is keyed by the input parameter RESTRT.  If it 

is non-zero in value, the data tape is scanned in subroutine 

RTAPE until the cycle requested by input parameter ISTART is 

found.  The values of the necessary calculational variables 

of the requested cycle are then read, and the computation is 

continued. 

2.5.2  Major Subroutines in the Main HAIFA Calculational Loop 

UPDATE  -- UPDATE is used to solve the conservative equations 

for vorticity and temperature.  Crowley's second order or 

fourth order scheme is called from this subroutine to calculate 

the advection terms.  This scheme is described in Section 2.2.2 

of this report. 

LAPLAC  --  The Pcisson equation relating the stream function 

and the vorticity is solved using this subroutine as the con- 

trolling program.  The details of the Poisson solver are given 

in Section 2.2.4. 
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VELOG  -- The updated stream function values are differenced 

in z-space to provide the horizontal velocity field u , and 

in x-space to provide the vertical velocity field v. 

PRTTST -- This subroutine defines the type of output required 

in each cycle, viz, plots, large edits, and/or data dumps on 

tape are available options with this program. 

TIMSTP -- The TIMSTP subroutine calculates a time step to 

be used in the calculation limited by the numerical stability 

criterion.  The stability criterion is outlined in Section 2.3. 
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3. MODIFICATIONS TO HAIFA 

The HAIFA equations described in the preceeding sec- 

I tions are limited in that the formulation has been simplified 

i        both from the mathematical and physical points of view.  In 

Section 3 we discuss several investigations to generalize both 

| the mathematical and physical aspects of the code.  The three 

programs described below are currently being tested and are 

approaching operational status. Additional features are to be 

incorporated in the latter part of the contract; they are dis- 

cussed in Section 6. 

3.1    COMPRESSIBILITY 

3.1.1  Derivation of the Differential Equations 

The use of HAIFA for the investigation of mountain 

waves is appropriate in that the effects of buoyant stability 

and dynamics are taken into account, but its applicability is 

restricted by the incompressibility of the flow.  In particu- 

lar, if the height of the mountain range is comparable with 

the atmospheric scale height there will be effects induced by 

the expansion experienced by an air packet in being lifted over 

the mountain. 

The effects of :onipressibility are to be determined 

through the use of a new code developed with which problems in- 

cluding this effect may be run and the results compared with 

HAIFA calculations.  Several objectives were sought in arriving 

at a method of accomplishing this task.  They are discussed 

below. 
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• i (1)  Sound waves should be excluded from the numerical 

solutions in order to permit efficient calculations having time 
intervals comparable with materiul displacement through a space 
interval. 

(2)  Compressibility effects should be retained. 

(3j  The scheme should be formulated in physical vari- 
ables to facilitate addition of new physical effects (such as 

Coriolis force or water vapor). 
(4) Conservative difference equations should be sought. 

(5) The scheme should retain a mathematical form simi- 
lar to HAIFA to make programming and check-out as speedy as 
possible. 

The "anelastic" equations of Ogura^ •' meet some of the above 

criteria and will be compared further below. However, the 
anelastic equations do not allow an arbitrary atmospheric 

stratification, do not include the change in density due to 
temperature perturbations and are formulated in problem- 

• ■       dependent variables. These limitations cnn  be avoided, as 
• ■       indicated below. 

The equations for inviscid fluid flow on a non- 
rotating earth (additional terms will be discussed later) are 
written in conservative form as follows: :. 

Ü 

[J 

LI 
3pv  apuv  3pv2   apwv . 3£ _ n rx  x^ 

u r^r^r^^if^p (3.4) 
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1  RT For a perfect gas, T: " zr~    an^ t^e energy equation can be 
written 

For the adiabatic, inviscid non-rotating motion of a perfect 

gas we have the equations of motion given by Eqs. (3.1) 
through (3.5). 

We now consider the equations in two spatial dimen- 

sions, the vertical and down-wind directions, assuming that 
there is no dependence of any quantity on the y-direction. 

The equations become 

3t + 3x   al" " 0 > (3-6) 

|£U + |£ui + ||WU + ||.o  , (3.7) 

dT   1 
dt ~ pC g|    ,    p = pRT  . (3.9) 

We consider the problem in which the mountain perturbs 
an initially steady state of the atmosphere, w = 0, 
u0 = u(z,t=0), T0 = T(z,t-0), po = p(z,t=0), the normal 
initial conditions previously discussed.  These initial values 
are related to each other through the static atmosphere equa- 

tion, 
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aPo «Po 3 ln po     B ,   . 
ST" * "^o " ■ RT- '   or  Ji " SfT '    (3-10) o o 

The transient solution is obtained by solving the 

equations of motion starting with the initial values and im- 

posing boundary values on the motion.  In order to eliminate 

sound waves from the transient solution it is sufficient to 

set jt" = 0 in E<1« (3.6).  The resulting equation, 

JS^If-O  . (3.11) 

is in suitable divergence-free form for the introduction of 

a solinoidal function.  Since Eq. (3.11) is no longer suffi- 

cient to determine how the density changes, it is necessary 

to introduce an additional equation based on an approximation. 

We assume that the density can be determined at every position 

from the perfect gas equation of state in which the pressure 

takes the value associated with the static atmosphere, p  , 

through the relation 

Po Sf  . (3.12) 

The temperature equation can be written in terms of 

the deviation T'  of the temperature from its static value 

(T = T + T') . o 

In addition, the temperature equation can be reformu- 

lated so that the advection term assumes a conservative form. 

Expanding the left-hand term of Eq. (3.9) 
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dT   31'    31'    31'    dTo 

multiplying by p  and adding Eq. (3.6) multiplied by T* , 
we obtain 

!|H + 9pT'u + 3pT'w +  ^o = 1 dp 
I 3t    3x     3z      wJz^  C 3T * 

P 

I Assuming the pressure to have its static value in the right- 
hand term of Eq. (3.9), 

dp  dPo   dPo 
at" ar-" war-" -w8p 

o 

the energy equation becomes 

3pT'   3pT'u , 3pT'w _ „ rt
aTo  n  v rx  -t-i^ 

where we have assumed 

"o  T   To * T' 

0      0 

from Eq. (3.1il) . 

The "anelastic" equations of Ogura and Phillips also 

take account of compressibility effects in the atmosphere and 

it is of interest to compare the above development with them. 
The anelastic equations are ba.Tjd on several assumptions: 
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(1) The potential temperature i«; almost con- 

stant; deviations from constancy are 

small. 

(2) The density appearing in Eq. (3.11) is 

that associated with a neutrally strati- 

fied atmosphere. 

(3) The potential temperature appearing in 

the momentum equations is that of the 

neutral atmosphere, i.e., It is constant. 

This assumption corresponds to using a 

neutral atmosphere density in the ad- 

vection terms of Eqs. (3.7) and (3.8). 

The treatments of the buoyancy term of the momentum equations 

and the energy equations are the same in the two schemes. 

Consequently, the proposed scheme is more general in two 

principal respects; the initial stratification of the atmos- 

phere can be arbitrarily specified, and the effect of temp- 

erature changes in the atmosphere are reflected in all of the 

density terms. 

The system of compressibility equations, Eqs, (3.7), 

(3.8), (3.11), and (3.13), have a form similar to the 

Boussinesq equations, and can be solved in a similar manner. 

From Eq. (3.11) a stream-function-like quantity  (J)  can be 

introduced: 

: pu ■ H    ,    PW — H . C3.14) 

In terms of a vorticity-like function C i 

_ 3pu  3pw f. .,., C " "51"  IT"  ' C3-15) 
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yielding  the  same  Poisson equation as  for  the  Boussii?esq 

approximation, 

t-{^»n* • f3-16' 

The prognostic equation for  C  is obtained by cross differ 

entiating Eqs. (3.7) and C3«8) and subtracting. 

C3.17) 

Eq. (3.17) replaces the vorticity equation of the 

Boussinesq equations, differing principally in having the 

additional terms containing the derivations of (j),  u and w. 

3.1.2  Method of Numerical Solution 

The system of compressibility equations is seen to be 

very similar to the HAIFA equations, and in fact only nominal 

modifications to the HAIFA code were required to produce a 

compressible low-speed flow code. 

Generating Initial Conditions — As with HAIFA, the 

values of u (z)  and T (z)  are specified by input to the 

code.  In addition, the initial surface pressure P (z=0) 

must be specified.  The remaining initial pressures are found 

using the relation of Eq. (3.10), 

P0(Z) - Po(z=0) exp - zj      TTIT 
»/ 

2 dz 

o  0 
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The  initial density profile  then follows  from 

The  stream-function-like quantity    (j»    is  formod by  integrating 

|| -  P0Cz)   u0(z)     , 

and the vorticity-like quantity C is initialized from the 

non-zero term of Eq. (3.15), 

(as in HAIFA, there is no x-dependence of any quantity initially). 

Modification of Advection Scheme — The quantities to 

be advected in the system of compressibility equations are 

C, Eq. (3.17), and (pT1), Eq. (3.13).  Since the equation of 

continuity is in the form 

3pu  3pw  n air + TT"  0 ' 

Crowley's second order scheme for advection was modified to 

use  (pu)  and  (pw)  as pseudo-velocities. 

This code is now complete and problems will be run in 

the next six months in order to compare with HAIFA results. 

In addition, a problem will be calculated using a completely 

compressible code. 
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3.2    MOISTURE 

3.2.1  Derivation of Equations 

In this section the effects of moisture on the equa- 

tions for Boussinesq fluid flow are discussed.  Frequently, 

atmospheric water in the form of water vapor, cloud water, 

and precipitation will have important effects on the charac- 

teristics of gravity waves caused by mountains.  Lee waves 

are frequently accompanied by clouds which can be expected to 

modify the stability of the air through the presence of the 

latent heat of condensation which the cloud water adds to 

the air.  In addition, there are effects discussed by 
r fi 71 

Orville*- ' '  of up-slope winds due to high-level heating 

and evaporation, but these are not of primary interest in 

our investigation.  Consequently, the terms resulting in 

changes of stability of the air in which clouds are forming 

are of primary interest. 

Radiative heating and cooling of the air has not been 

taken into account in this discussion, even though the bound- 

ary condition on moisture is affected by it.  Boundary layer 

effects at present are largely omitted from HAIFA but are 

considered in Appendix E.  It will be beneficial to incorpo- 

rate them, together with radiative terms, at a later stage of 

the code development work. 

The HAIFA equations are to be modified to include the 

effects of moisture by incorporating the following major 

changes: 

(1) the momentum equation is modified by 

including the effects of moisture in 

the buoyancy term, 

(2) the equation of state for air is 

changed to include moisture. 
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(3) the energy equation is modified to in- 

clude energy changes equivalent to the 

latent heat of water being given to or 

: 

Li 

. . 

taken from the air, 

(4) a new equation is added to account for 

the conservation of moisture in the air 

excluding ram water, and 

(5) a conservation equation is included 

which expresses the rainwater content 

in the atmosphere including sources and 

sinks at the boundaries. 

An outline of the derivation of the equations is given below. 

The momentum equations and the equation of state for 

a system with moisture are 

p = pRT(l + Er)  . (3.20) 

These equations have been derived by Orville, and 

Ogura and Phillips among others.  The energy equation is 

now derived from the first law of thermodynamics in order 

to redefine some terms used previously, i.e., 

Tds = dh - &■  . (3.21) 
P 
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For an adiabatic system, this can be written as 

dh _ 1 dp _ 1/3P   3£   3£\ ,.  . 
St " p 3t " p\ät + u37 + WTFJ * (3-22) 

In the Boussinesq approximation, the first two pressure terms 

in brackets are zero and the third term is equivalent to 

-wgp  (assuming the hydrostatic approximation), 

ä£- -wg . (3.23) 

The enthalpy changes will include energy changes due 

to both advection of the temperature and latent heat being 

released or absorbed as the moisture in the air changes phase. 

The energy equation can thus be expressed as 

3T + „3T + W3T 

Jt + u^ + WFY w<" -r 

where 

T = T + ^-  . 
LP 

Expressing the temperature as T = T + T' where T  is 

a mean value which is constant and T'  represents all vari- 

ations of the temperature from this space averaged quantity, 

i .o., 

T - T+ T» + il ■ T ♦ T"  . (3.24) 0 L     O 
P 
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. 

. 

- - 

Eq.   (3.23)  becomes 

-»TU aT" aT»' If + uli- • «If - -r  • (3-"J 
A diffusion term may be included in the above equation as 

+ktV
2T" where k.  is a constant coefficient. 

The vorticity equation, derived from the momentum 

and continuity equations, is 

I? * "U ♦ «I? - 8" * lc * V feW.) 

♦ £_„!!£ + P_ g!!l . C3.26) 

Making the Boussinesq approximation and the further restric- 
tion that To/(To + T') =1 , the equation is 

&♦-£♦«£- -f- <> ♦ 'c ♦ v IF 

0  p 

Eqs. (3.25) and (3.27) and the Poisson equation relating the 

stream function and the vorticity replace Eqs. (2.7) and 
• •        (2.10) in the basic HAIFA scheme. 

The equation of water vapor conservation is obtained 
by deriving equations of total water conservation and rain 

water conservation and taking the difference between them. 
—        The total water conservation equation may be obtained by 
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equating the sum of the time derivative of the total water 

plus the diffusion of the water carried as cloud water and 

moisture to zero. Mathematically, this is expressed as 

I IjiW)  s   -V.(rr^) - V-(pic^) 

-   V.   pytf-VjjHj dD 

♦ kV2   p(r+ic)       . (3.28) 

The integral term on the right side of the equation repre- 

sents rain water advection and fallout as a function of 

droplet diameter.  Several authors including Orville, Kess- 

ler,  ' Sirivastava,  ' and Armason, et.al.^  ' have derived 

expressions for water droplet formation and precipitation in 

the atmosphere. At this .-tage in the development of HAIFA 

with moisture, we have elected to program the conservation 

equations ar derived by Orville with one or two exceptions 

noted below and will modify these equations as we derive or 

discover better prescriptions for each of the terms. 

The final equation for total water conservation may 

be expressed as 

3V       9i 

3i 
^ + T IT + M, i ,£ + v 3-1 .       (3.29) 'rvt  p 31 T Vt p 17 T ¥t 3r 
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n 
The last two terms on the right side of Eq. (3.29) are ignored 

by Orville.  At the present stage of our analysis, the magni- 

tude of these terms with respect to others in the equation are 

is unknown; further study will be made to justify retaining 

them. 

The final equation required to complete our analysis 

expresses conservation of rain water in the atmosphere. 

The change of the rain water with respect to time is equal to 

the advection and fallout of the droplets plus a source term 

which expresses the conversion of cloud water into rainwater, 

I the growth of rain drops through coalescence, and the evapo- 

ration of rain falling through unsatuiated air.  The production 

terms also have been derived by the authors already noted.  The 

most satisfying expression seems to be that derived by Orville 

or Arnason.  For consistency, our original equations for the 

production term will be equivalent to those arrived at by Or- 

ville. Modifications will be made where we obtain an im- 

proved description of the processes beiag undergone by the 

water.  The equation may be expressed as 

31      3V   I V Ä      3V   i V  ^ r _ -  ^_t _ 2l t  3£ _ . __t _ rvt 3p 
3t    r 3x    p" 3x   r 3z    p  3z 

3£    3£      3£      31 

- u53r * »vr - vt TT
1
 - Vt JIT ' Pr • f3'30' 

This equation, Eq. (3.30), includes variations of p, I   ,     and 

V. with respect to tne horizontal direction. Orville has ig- 

nored these, but for completeness and until we can substantiate 

that they are negligible, they will be carried in our studies. 

The production term,  Pr , is described in detail in Appendix B. 
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The equation for conservation of water vapor is found 

by subtracting Eq. (3.30) from Eq. (3.29).  The result is 

3V 
I* ♦ ^-Vq - kq Vaq - £r ^ - Pr  . (3.31) 

Eqs. (2.8), (3.25), (3.27), (3.29), and (3.31) constitute 

the complete set of equations to be solved in HAIFA with 

moisture. 

3.2.2  Difference Equations 

The difference equations used in HAIFA with moisture 

are formed in an identical manner as those in the basic HAIFA. 

All moisture terms are cell centered quantities. The time 

differences are taken in the forward direction, the advection 

terms are treated by Crowley's schemes and all other terms are 

centered in space through appropriate averaging.  Since this 

version of HAIFA is not thoroughly checked out at the time of 

this report, the finite difference equations will not be pre- 

sented here. A complete listing of these equations will be a 

part of the annual report under this contract. 

3.3    VARIABLE ZONING IN VERTICAL DIRECTION 

The modifications to the basic HAIFA code that will 

enable it to operate with a mesh of variable spacing in the 

vertical direction are examined in this section.  This modi- 

fication affords the ability to resolve more finely certain 

areas without excessively slowing the computation by re- 

quiring fine zoning throughout the giid. Modifications to 

two routines of the code are necessary.  They are the Poisson 

equation solver, and the vertical advection subroutine.  Each 

modification is discussed below. 
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3.3.1  The Poisson Solver 

The use of the Fast Fourier Transform in the horizontal 

x-direction imposes the limitation that the spatial interval, 

Ax , be constant.  In the vertical direction, however, the 
solution of the Poisson equation is obtained by Gaussian elim- 

ination and is not limited to a constant spatial interval. 

The Gaussien elimination subroutine of POISPK solves 
a system of difference equations approximating 

The solution of these equations is briefly outlined below: 

The finite difference form of Eq. (3.32) 

may be written as a tridiagonal system 

Ai ^i+l + Bi 'i'i + ci *i.l " Di  • (3.33) 

Letting 

*! - Ei *i+l + Gi (3.34) 

which implies 

*i-l s Ei-1 h  + Gi-1 ' (3-35) 

and substituting into the tridiagoi.al sys- 

tem, the coefficients E. and G. may be 
expressed as 
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Bi + Ci Ei-1  ' 
(3.36) 

Gi  Bi + Ci Ei.l 
(3.37) 

The finite difference form of Eq. (3.32) 
for constant vertical zoning is 

»i^1 - [2 ♦ a(A2)2]i|»i * ^i_1 

~ (Az)2        "" 
Qi • (3.38) 

and the coefficients A. , B. , ^i > an^ 
D-  are thus equivalent to 

Ai  - l/(Az)
2  , 

B . - -a - 2/(Az)2  , 

C. - l/(Az)2  , 

Di = ^   • 

Using these coefficients, E.  and G. can 
be calculated and thus the ty-     may be 
solved for recursively. 

With variable zoning the finite difference form of 
Eq. (3.32) becomes 

(3.39) 
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*i+1 ■ ^  ^ - ^.i 

Az "^^-l 

Az. + Azi-i 
 2 1- 

o^i - Qi  , (3.40) 

where the location of \|> and Az ire shown below, 

The coefficients A. , B^ » C. , and D.  are now equivalent 

to 

Ai  - l/( zii^i  + Azi,1)/2) 

Bi -•■2/(Azi Azi_1) - o 

(3.41) 

Ci - l/(Azi_1 (Azi + Azi_1)/2) 

D. - Q.  . 

The values of E.  and G.  are computed using the above 

coefficients and <K  is computed in the same manner as indi- 

cated above by Eq. (3.35). 
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3.3.2  Vertical Advection 

The advection schemes discussed previously are valid 
for uniform zones only. The equivalent scheme for variable 

size zones is derived below for the Crowley second order 

scheme.  It has been incorporated into a version of HAIFA 
which is currently being tested.  The fourth order scheme will 
be considered at a later date. 

The one-dimensional advection equation in conservation 
form may be written for flow in the z-direction as follows: 

|| + ll(v*) - 0 (3.42) 

where ^ is a variable representing the quantity to be ad- 
vected.  Only the one-dimensional equation need be considered 
due to the splitting technique used in HAIFA. 

In finite difference form, Eq. (3.42) is 

.n+1  .n At 
Az. -[(v*)j + 1 - (v^Oj (3.43) 

The term A(v(l>) . requires the flux across the boundary of 
the j cell (see figure below). 

f 
Az 

J + l 

f 
Az 

Az 
f 
j-l 
I 

iti 
«i>. 
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The flux at the j+1 boundary may be expressed as vj^* 4». 

where ^ represents the value of the variable * at that 

boundary. Assuming $ to vary linearly between zone 

centers, this flux may be expressed as' ^'i:V$ U  -U '  ' 

■ '' 

♦n+1 

V«) boundary 
• ' •■  ■■•-■■•■* ■..:.;-*■ '^jte-'.^v^ ■.■■i*-vi 

Assuming ♦ - a + bz , and integrating, .. ;■:  ; ,,; ^ - a ♦ DZ , ana integrating,  ■ 

-'.mi:   :,r^:"^1+1 -♦i) Az 1 

(3.44) 

■      -■ 

I • J.        U *• . ., -s   ♦  A Z . 

. ■■*:    • . ■ > • :-  ^■'•, .;-•■■ ■■;■   . • ■ 

; . ••■  ' • .. -■•■'.'■ ■ :':    '■•?:■. . 
'' -■  ■  ■ ..■•• ■. , 

The new value of $?   can then be expressed using Eq. (3.45) 

(3.45) 

as 
■ 

♦r - ♦" * %(^ - ^^ 
■ 

(3.46) 

: M 

. ;■" ^ ■•■■■. 
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4.  TEST PROBLEMS 

Several problems have been calculated using the basic 

HAIFA code. The results of each are presented in this sec- 

tion and comparisons with other results are made where pos- 

sible. An edit routine to determine the momentum flux 

(wave drag associated with gravity waves) was written and 

is described in detail in Appendix C. 

Table I summarizes the initial conditions used for 

each problem. The boundary conditions in each case were 

those described in Section 2.4 of this report.  The grid 

size consisted of 35 vertical cells by 64 horizontal cells. 

/ 

4.1 SINGLE WAVE 

The atmospheric and horizontal velocity conditions 

to produce a single gravity wave were arrived at using the 

results presented on two-dimensional mountain lee waves by 

Palm and Foldvik.^11^  They had established that if the 

quantity 

{ 

.■«••vl 

S 1 32u 
u 3z2 

where S is the stability of the atmosphere, has a value 

at the ground level which is at least 2.5 times as large as 

the minimum value (usually located 7-10 km above the ground), 
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Figure 4.1 - Single Wave Velocity Profile. 
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Figure 4.2 - Two Wave Velocity Profile. 
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the wave motion in the lower troposphere depends only on the 

wind profile and the stability.  This condition is almost 

always satisfied when mountain waves occur.  A diagram giv- 

ing the expected wave lengths of lee waves under various 

stability and wind profiles was presented.  In particular, 

regions of one and two waves were indicated. Using this 

diagram, a single wave of approximately 16 km in length was 

predicted for a lapse rate equal to one-h?If the dry adiabatic 

value (see Figure 4.3), and the exponential velocity profile 

shown in Figure 4.1. 

The numerical results calculated using HAIFA are 

shown in Figures 4.4 through 4.7 as streamlines and vertical 

velocity contours at several times up to 1-1/4 hours. The 

measured wave length from Figure 4.5 or 4.7 is approximately 

15 km. As can be observed from the results, only one wave 

did form during the time the problem was run.  The cyclic 

boundary condition prevented any further computation due to 

disturbances created by the obstacle in the flow stream 

being introduced into the main flow upstream of the mountain. 

Some interference with the upper boundary positioned at 

10.9 km may also be seen at the latest times. 

The momentum edits u'v'  (see Appendix C) located 

one cell or 312.5 meters above the mountain top are shown 

in Figures 4.8 and 4.9 for various lengths used in obtaining 

the horizontal averages.  The qualitative result obtained 

from these figures indicates a decrease in the edited quan- 

tity as the length used in the averaging length is increased, 

i.e., a lower amount of drag is created by the mountain.  One 

exception appears, however; this can be noted as a cross over 
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Figure 4.3 - Initial Temperature Profiles used 
in Test Problems. 

58 



r 
r 
i 

niniiH« 

u 
I 

lllfffülll \m\m\ 

• 

• ■ 

• 

• 

u 

« 

.Hi 

• 

* 
I. 

I 

3SR-735 

Uli!!!!!!! 

e 
4) 
.-• 
XI 
o 
u 
a. 
v 
> 
cd 

c 
•H 

e 
o 

u 
to 

I 

u 
0« 

R 

59 



iimmni I!!!!!!!!!! !!!1!!!!!!! 

3SR-795 

!!!!!!!!!!! 

• 

QO 
CO 

E 
i-H 
^3 
O 
I» 
a. 

> 
2 

c 

e 
o 

VM 

C 

to 

l/> 

i 

V 
ft 
3 
0« 

i.     ^ 

u s 

60 



(    • • 

3SR-795 

i* 
in 

S i 

e 
9) 
i-t 
U3 
O 
u 
a. 
v 
> 

c 
•H 

E 
O 

v 
•H 
u. 
>s 

o 

> 

> 
I 

V 

u. 

61 



3SR-795 

S I » » 

I  " 

.. 

^1 

fM 

!•• ?• 

w 

kM    •« 

62 



r 
3SR-795 

0 

0.01 _ 

i. -0.02 

Sfe 
0.03 - 

0.04 - 

— 1 < I  <   65 
%  .- 1 < I  <   48 

 1 < I  <   36 
\  1 < I   <   30 

\   N^ 

^ •— 

• • 

\\                    ---^. ^^ 

% 
•^ vv     V      ^ * \ ^. 

\ ^s 

\          V ̂ ^ 

•    \ 
• 

IM.                                                                                                                                         • 

\ • 

\ 

1           1.1 L.,.- 1                 J 
3      41      S 

Time « 10"3 (sec) 

Figure 4.8 - Single Have Problem Momentum Flux Edits 
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of two of the curves occurring at approximately 3400 to 4000 

seconds on either of the figures.  The same phenomenon occurs 

when the averaging length is reduced by discounting zones 

from in front of the obstacle as well as the rear. While 

it is not clear what the averaging length should be in these 

cases or the intrepretation of these results, it is clear 

that the magnitude of the edited quantity is only equal to 

the drag on the mountain if the inlet and outlet values of 

p and pu2  are identical.  Since this is the case only 

when the total numerical grid length is used as the averaging 

length, due to the cyclic boundary conditions, a value for 

the drag on the mountain can only be estimated from the 

uppermost curve of Figure 4.8.  The value of the drag 

reached at 4,445 seconds was approximately equal to 10 dynes/ 

cm2.     This value agrees qualitatively with measured values 

of the momentum flux reported by D. K. Lilly^  ' for mea- 

surements at Boulder, Colorado. 

One other important feature of the momentum flux 

edit is the oscillatory character of the values with tiM. 

This is thought to be related to the formation of the in- 

dividual vertical velocity cells, i.e., as a new positive 

or negative cell is formed, the effect seems to be to in- 

crease or decrease the horizontal average of the vertical 

flux of horizontal momentum.  This cyclic character is 

perhaps more clearly seen in the edits of the two wave 

problem discussed later. 

Figure 4.10 shows the momentum edit as a function 

of height at a time of 4,445 seconds.  The value goes to 

zero very quickly above the mountain.  This indicates the 

solution is not yet approaching a steady state value since 

the drag for a steady problem would be constant with height. 
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4.2    TWO WAVE PROBLEM 

The conditions for the two wave problem closely match 
flS") 

those of a problem described by Wurtele and Foldvik.,■ J 

These authors computed numerically the transient formation of 

a mountain lee wave.  One wave of length 10 to 15 km was 

formed using conditions similar to those described for the 

two wave problem in Table I. Using the same type of analysis 

as described previously for the single wave problem, the Palm 

and Foldvik results indicated a wave of approximately 9.2 km 

wavelength as well as a second wave of approximately 25 km 

wavelength should be present.  Private communication with 

Wurtele indicated that the longer wave was not noticed in 

their calculation.  These data were incorporated into HAIFA 

and run to a time of 5,474 seconds.  The results of this 

numerical calculation are presented in Figure 4.11 through 

4.14. The streamlines shown in Figure 4.12 at a time of 

5,474 seconds display the presence of two waves.  The shorter 

wave appears just above and behind the obstacle and agrees 

with theory in that the wave length is approximately 12 km in 

length. A second wave appears behind the obstacle at a 

height of 7 to 8 km with a wavelength of approximately 22 km. 

The tmi'tl discrepancies between predicted and calculated 

wavele< gths are probably the result of the linear theory 

used in producing the diagram of Palm and Foldvik.  The 

presence of the second wave is also strongly evident in the 

bending over of the vertical velocity fields. The interaction 

of the two waves is seen by the presence of small vertical 

velocity regions whose direction is opposite of the velocity 

cell completely surrounding it. 

The figures showing the growth of the vertical veloc- 

ity cells may be compared to the results of Wurtele and Fold- 

vik.  The Figure 4.15 was taken from their paper and indicates 
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Figure 4.IS The field of vertical velocity as cal 
culated by Wurtele and Foldvik.  The 
lowest panel represents the total 
streamline field. 
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• large negative vertical velocity cell over the obstacle for 

all time.  The positive cell just downstream of the obstacle 

is aoving toward the upstreaa side of the obstacle with time 

but does not ever dominate the flow over the obstacle. Our 

calculations indicate a negative cell over the obstacle for 

times to 5,300 seconds. Shortly after that time, the large 

positive cell at the rear of the obstacle combines with the 

small positive cell forward of the obstacle. A small nega- 

tive cell still remains over the obstacle itself, but there 

is no longer a dominate negative or downwind flow over the 

obstacle. These differences are not well understood.  The 

phenomena may be due to differences in initial or boundary 

conditions as none of these were completely indicated in the 

Wurtele and Foldvik paper. The additional time of the com- 

putation or the presence of the second wave may also be 

responsible for this phenomena. The length of the obstacle, 

which was not specified in the previous study, was found in 

HAIFA calculations to have a definite influence on the pat- 

tern of vertical velocities over the obstacle. The tempera- 

ture distribution, which was specified as equal to one-half 

the dry adiabatic, may also vary a small amount. Any of 

these parameters may have caused the small differences seen 

in our calculation and that reported by Wurtele and Foldvik. 

The similarities, particularly of the vertical velocity cells 

at times less than 5,000 seconds, certainly indicate good 

qualitative agreement. 

The momentum edit of the two wave problem, shown in 

Figure 4.16, indicates a much more cyclic nature than of the 

single wave problem.  Each half cycle appears to have some 

correspondence to the complete formation of a vertical cell 

although the interaction of the two waves present makes the 

intrepretation of the data difficult. 
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Figure  4.16 - Momentum Flux Edit   from Two Wave 
Problem. 
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4.3    UNIFORM VELOCITY 

A problem using a velocity distribution uniform with 

height and equal to 10 m/sec perturbed by a one kilometer high 

■ountain was completed.  The lapse rate was set equal to one- 
half the dry adiabatic. Figures 4.17 through 4.20 show the 

resulting streamlines and vertical velocity cells formed under 

these conditions  Nurtele and Foldvik have also investi- 

gated this problem, the results of which are shown in 

Figures 4.21 through 4.23. A comparison of their streamlines 

with our results show a continuous spectrum of waves is ex- 

cited in both calculations, which when added together produce 

growing numbers of upwind-tilting troughs and crests ex- 

tending to great heights.  The figures showing the verti- 

cal velocity cells at the forward and rear of the obstacle 

show these upwind-tilting troughs and crests even more dis- 

tinctly.  Lyra*-  ' tneoretically showed these same results 

using a linear analysis. His steady state analytical result 

for the streamlines and the vertical velocity field are 

shown in Figures 4.24 and 4.25.  While there are certainly 

similarities in the results of Lyraf Wurtele and Foldvik, and 

the S' calculation, there are also some significant differ- 

ences.  The four total streamline fields computed by Wurtele 

and shown in Figures 4.21 and 4.22 show a large amplitude 

wave just above the lee slope.  The vertical velocity in this 

region is more than five times the upstream wind and the 

total horizontal velocity is negative at some grid points. 

This feature is not present in the linear theory and did not 

appear in the S* computations.  We are continuing to investi- 

gate these differences. 

One of the most significant items found in calculating 

this problem was a numerical instability associated with the 

flow when the normal stability criteria for the advective 

terms of the equations was used.  An initial computation 
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Figure 4.17 - Streamlines from Uniform Velocity Problem, 
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Figure 4.18 - Streamlines from Uniform Velocity 
Problem (page 2). 
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Figure 4.19 -Vertical Velocity Field from 
Uniform Velocity Problem. 
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Figure 4,20 —Vertical Velocity Field from 
Uniform Velocity Problem 
(page 2). 

79 



3SR-795 

(b) 

Figure 4.21 — Computed Streamlines from Wurtele and 
Foldvik at successive times for Uni- 
form Velocity Problem. 
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Fi3ure  4.22 
(d) 

Computed Streamlines from '.'.'urtele and 
Foldvik at successive times for Uni- 
form Velocity Problem (page 2). 
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Figure 4.24 - Streamlines fro« the linear theory 
(after Lyra). 

ih* 

Figure4.2S - Field of vertical velocity when 
U - constant with height (after 
Lyra).  Isopleths for w > 0 only, 
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using this tine step control produced a series of large wave 

length high amplitude waves which propagated throughout the 

flow very quickly.  The problem was recalculated by putting 

an upper liait on the time step which was based on the phase 

speed of the largest of these waves, i.e., a wave with a 

50 km wavelength.  This limited the time step to less than 

14 seconds per cycle assuming the overall criteria to be that 

the SO km wave would not completely traverse a grid cell in 

one cycle. The actual limiting time step used in the recal 

culation was 12.0 seconds. The resulting wave pattern is 

the one shown and previously discussed in this section. 

This new stability criteria, which had not been previously 

used, was not required in earlier problems due to either 

(1) the damping of the disturbances caused by the wind shear 

or (2) the high velocities in the single wave problem con- 

trolling the time step to an acceptable value.  Later prob- 

lems, the tropopause and inversion layers, exhibited this 

same instability. 

4.4    INVERSION LAYER I 

The determination of the effect of an inversion layer 

in the atmosphere was calculated using the basic HAIFA ode. 

The inversion layer was described as a positive 4*C tempera- 

ture change over a l.S km height as shown in Figure 4.26. 

The other initial conditions are described in Table I. The 

results, shown in Figures 4.27 through 4.30, indicate a 

small effect in the vertical velocity cells at heights cor- 

responding to the inversion heights. The cells appear to be 

broader at a S km height than those seen in the two wave 

case for example. There also appear to be displacements in 

the vertical cells at this position. However, these may be 

due more to the change in the lapse rates at this position 

than the presence of the 4*C temperature increase. 
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Figure 4.26 - Temperature Distribution used in Inver- 
sion Layer Problem. 
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Problem (page 2). 
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Figure 4.29 -Vertical Velocity Field from In- 
version Layer Problem, 
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Figure  4.30 - Vertical Velocity Field from In- 
version Layer Problem  (page  2), 
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Because of the coarse zoning at the inversion layer, 

the definition of the flow is poor.  This problem will be 

recalculated using the variable zoning code and the results 

will be reported in the final report of the contract. 

4.5    TROPOPAUSE PROBLEM 

The test calculation representing a tropopause prob- 

lem consisted of initial conditions as described in Table 1. 

The calculated streamlines and vertical velocity contours 

are shown in Figures 4.31 through 4.34.  The most noticeable 

characteristic of the resulting solution is the tilting of 

the vertical velocity cells toward the upwind direction. 

The streamline pattern for this problem did indicate, but 

not clearly, this same phenomena of the upwind tilting of 

the gravity wave peaks. 
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Figure 4.33 -Vertical Velocity Field from Tropo- 
pause Problem. 
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S.  RADIATION IN THE EARTH'S ATMOSPHERE 

The radiative transfer problem in the Earth's ataos 

phere reduces to the solution of the seemingly simple equa- 

tion 

dIv 

which states that radiant intensity, in traversing the element 

of length ds , will be augmented by sources in the amount 

J ds and diminished by extinction in the amount K I ds . 

In general,  I  , the radiant intensity, and J  , the source 

function, depend on both a spatial coordinate r and an angular 

coordinate (direction) u    at the point r , äs well as upon 

the frequency v . The time dependence of these quantities is 

ignored because the radiative state of the atmosphere is 

established, for all practical purposes, instantaneously.  KV 

is the extinction coefficient, which describes the relative 

depletion in the intensity of the beam, dl /Iv , upon tra- 

versing the element of distance ds. K      is in general the 

sum of an absorption part and a scattering part. J  describes 

the additions made to the beam intensity along ds by thermal 

or non-thermal emission and by scattering.  In the case where 

the source consists only of thermal emission, J  does not 

depend on  I  and Eq. (5.1) can be solved explicitly for I : 
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IVU.S) - IV(»0.Ö) exp -    Kv(f) d$' .2) exp - j 

%(»') ds' 

(5.2) 

d$" 

where s  corresponds to some boundary at which I   is pre- 

sumed known. However, even in the case where J  depends on 

I  ,  Eq. (5.2) is a perfectly valid alternate formulation of 

the radiative transfer equation.  Eq. (5.1) will be called the 

differential font, and Eq. (5.2), the integral form, of the 

transfer equation. 

The consideration will be limited to plane geometry, 

which is justified in view of the small depth of the Earth's 

atmosphere in comparison to its radius (when the sun is near 

the horizon the plane-parallel atmosphere approximation fails). 

The geometry is illustrated in Figure 5.1(a).  The vertical 

coordinate is denoted by  z , and the angular cooriinates de- 

fining the direction S at z are denoted by 8 and ♦ . 

As is customary, the variable u '-  cose is employed rather 

than 0 itself. From Figure 5.100, it is clear that in these 

coordinates the element of distance ds Is related to dz by 

ds - äi , 

so that Eq. (5.1) becomes 

3Iv 
^TT ■ Jv - S ^ ^•3) 
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— y 

Cb) 

Figure S.l - Coordinate system for radiation problem. 

where I • Iv(t,u,4)  and icv ■ icv(z) .  If we make the 

assumption of local thermodynamic equilibrium (LTE), which 

is valid below about 70 km in the atmosphere, then the source 

term J  may be replaced by a more explicit expression, 

leading to the transfer equation 

4r ■ ai(Bv * V * Km fw'*'*') M*'3') d0' - ^1 t».4) 

where    o'     is  the  volume absorption coefficient    a,    corrected v r v 
for stimulated emission 

K ■ %(' - •■hv/kT)   • C5.5) 

0      is  the scattering coefficient,    B      is  the Planck function 

BvCT)      ehv/kf .   J     ' (5.6) 

and P  is the phase function, defined so that 
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is the probability that a photon entering a volume element 

around z from direction 3* will be scattered into the 

cone dQ    of directions around 5. S nee absorption is ex- 

plicitly represented in Eq. (5.4), the above probabilities 

must sun to one 

fpviz,Q.ti) $  • 1 (5.7) 

rather than to some number less than one as wouli be the case 

if absorption were tacitly included in the scattering terms. 

Because a volume element in the atmosphere has no pre- 

ferred direction with respect to scattering (due, say, to a 

permanent dipole moment), the scattering probability function 

P  depends only on the angle 6S between Ä and ÜJ' .  If 

Vs - coses 

this means that P • Pv.(z,y ) .  y  is expressed in terms of 

known angles 6 , 6' , # , ^,  as follows: 

M_ • ^•5' ■ (sine cos^, sin© sin^, cose) 

• (sine* cos*', sine* sin*', cose*) 

« sine sine*(cos* cos** ♦ sin* sin*') 

♦ cose cose* 

m   yp«   ♦   /l    -   MVl    -   H*1   COS    (*-**)       . 

Let us  integrate    P      over all azimuthal directions    *   ; 
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2* 2w 

P (z.MU'  ♦  /l-uJ  /l-w'1  co$J)di 
2w-#' 

• u" • /' - r P (sfini« ♦ /i-wa 

The second and third integrals cancel one another, because of 

the periodicity of cos^ , leaving 

P^.y.u') 
r2« 

5 I? j   %(«.»»,)*♦ 

2w 

' I? J   Pv(z»yw, * f^V*  ^V7 CO»#)d#  . (5.8) 

The important point to note here is that P  does not depend 

on ♦' . 

Using Eq. (5.8), one may integrate Eq. (5.4) over azimuth 

+ and so deal only with the azimuthally-averaged intensity  I  : 
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«:.(»« - ij V^   V 

where 

♦  ß. if., Pv(z,y,y')Iv(z,y')dii' 

IvCz,P) 
1   fU 

Iv(i,M,*)d4> 

(5.9) 

In problems such as the solar aureole, the location of the 

neutral points in the sunlit sky, etc., it is clearly neces- 

sary to retain the ♦-dependence of the intensity; for the 
computation of some important angular moments of the intensity, 

however, and in particular for the computation of vertical 

radiative fluxes and hence heating rates,  I  contains all 

the necessary information. 

No more than the first three angular moments of the 

intensity will be considered in what follows. They are, in 

the customary notation. 

Mz> ' I y\u.a)dn - p-J   iv(z,vO dy 

Fa,v(z) " /«a V2'^« (5.10) 

Paß,v^ - ?/«« «6 V^dß 

100 



r 
r 
i 
r 
i 
! 

I 

3SR-795 

where 

E , F , and P may be interpreted physically as the density 

of radiant energy, flux of radiant energy, and radiation pres- 

sure tensor, respectively.  Two moments of special interest 

are the vertical flux F  and the zz-component of pressure 

P *zz   ' 

Fv(z)  -yi Iv(z^) dß 

2-K   j      M  Iv(z,y}dy 

pv(z) 0 \  /Vvz.ftdn 

- I1 /    y2Tv(z,y)dy 

where for conveience the coordinate subscripts have been 

omitted.  The other components of the flux,  F  and F  , x       y 
might be of interest for some applications, such as the heat- 

(5.11) 

ing of inclined slopes, but their calculation would require 

retaining the ^-dependence of  I  , as wi 

of any of the other pressure components, 

retaining the (^-dependence of  I  , as would the calculation 
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In general, radiation energies and pressures within 

the atmosphere are completely negligible compared tc material 

energies and pressures, whereas radiative fluxes are compar- 

able to other energy fluxes in the atmosphere (latent heat, 

sensible heat, etc.); the reason for this is that the rela- 

tively small amounts of radiant energy travel at the speed of 

light, while the speed of material energy propagation is 

essentially limited by the sound speed. 

The definitions of radiation energy and flux given 

above are made plausible by looking at the result of inte- 

grating Eq. (5.9) over all y  (remembering the normalization 

Bq. (5.7) of Pv): 

dFv 
XT"  «i(4*Bv - cEv)  . (5.12) 

The terms on the right-hand side are source and sink terms to 

the radiation energy field; if they cancel, then Eq. (5.12), 

with the above interpretation of F , becomes the usual ex- 

pression for steady-state radiative energy conservation.  If 

they do not cancel, then clearly more energy is entering an 

infinitesimal horizontal layer than is leaving it, or vice 

versa, and the deposited or withdrawn energy will result in 

a net heating or cooling of that layer.  The expression for 

the heating rate is, in fact, taking the origin of z-coordinates 

at the surface of the Earth 

where 
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F(z) - f    F (2)dv (5.14) 
•'o 

p(2) ■ density of air at z 

C ■ specific heat of air at constant 
F  pressure . 

Eq. (5.13) is simply a restatement of the first law of thermo- 

dynamics, which is, in the usual notation, 

dq ■ de + p dv 

- Cv dT + pRT d(i) 

- Cv dT ~ BI dp 

for an ideal gas.  Since any atmospheric process at a given 

level  z will for all practical purposes take place at con- 

stant pressure, 

dp » 0 » R(p dT + T dp) 

then the first law can be written 

dq = Cv dT - |(-p dT) 

- (Cv + R) dT = Cp dT  . 

Dividing by dt , and noting that the heating rate due to 

radiation g— corresponds to  »§|* , leads to Eq. (5.13) 

(the factor p converts heating per unit mass to heating 

per unit volume, in agreement with the definition of F ). 
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To obtain the radiative heating rates in Eq. (5.13) 

is the primary goal of our calculation. To arrive at these 

numbers, Eq. (5.9) (or its corresponding integral form) must 

be solved for the I 's , which must be integrated ac- 

cording to Eq. (5.11) to obtain the F *s , and finally the 

F 's must be integrated in accordance with Eq, (5.14) to 

obtain the F's . The mechanics of solving Eq. (5.9) will 

be elaborated upon in the remainder of this section. 

The solution of Eq. (5.9) can be separated into sev- 

eral sub-tasks, which are: 

(1) specification of the phenomenological 

parameters entering the equation; 

(2) specification of boundary conditions; 

and 

(3) discretization of the independent vari- 

ables y , z , v for numerical solution. 

These three sub-tasks are discussed in turn in Sections 5.1 

through 5.3. 

5.1    PARAMETER SPECIFICATION 

The parameters required in Eq. (5.9) are the absorp- 

tion coefficient a' , the scattering coefficient ß , and 

the 4>-averaged phase function P  . a' and 3  are known 

to have both a temperature (T) and pressure (p) dependence, 

so that the temperature and pressure structure of the atmos- 

phere constitutes required input data (perhaps from a GCM). 

Other pertinent input data, required for the computation of 

B  and P  , are the aerosol and cloud structure of the 

atmosphere; more specifically, the number density of aerosol 

particles (including cloud droplets) as a function of both 
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height and particle radius, and the frequency dependent index 

of refraction of all aerosol constituents.  For the computa- 

tion of optical path lengths, the mixing ratios of the non- 

uniformily mixed gases H-O and 0, as a function of height 

are also required. 

Needless to say, the specification of atmospheric 

structure in such detail is beyond the capabilities of either 

experiment (soundings) or theory (GCM's) at the present time. 

However, experimentation with the detailed model being devel- 

oped should point the way toward simpler specifications of 

structure which are nevertheless sufficient for computing 

heating rates.  At the same time, one may expect an improve- 

ment in vertical resolution and aerosol prediction capability 

in the GCM's and pore accurate experimental data, particularly 

with regard to aerosols, in the near future.  Hopefully, this 

will lead to a felicitous convergence of the radiation model's 

need for atmospheric structure data and the ability of theory 

and/or experimental to furnish it. 

The absorption coefficient a  will not be discussed 

in detail here.  Absorption in the atmosphere takes place in 

large part in vibration-rotation bands of H^O, CCK, 0, and 

other minor constituents; each band contains thousands of 

spectral lines, resulting in an extremely rapid variation of 

a  with frequency. Voluminous compilations of a  exist, 

but it is impossible, for reasons of computer storage and 

economy, to discretize  I  in frequency space finely enough 

to follow the variations of ot  ; spectral intervals must in- 

stead be taken which contain many lines.  Hence, this whole 

discussion falls more naturally into the province of Section 

5.3, where discretization in v-space is discussed. 

The Rayleigh scattering coefficient  3  D  and phase 
* flSI 

function PR (independent of v) are discussed by Penndorf.^  ' 
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He gives the index of refraction n  of air at p « 760 nun Hg , 

T « 150C , and water vapor pressure f  (in mm Hg) as 

(ns - 1) x 10"« - 64.328 + 29498.l/l46 - p-) 

♦ 255.4 (41 - p-j 'l 

In  nt-JA       0.00068\  f 
■ \0-0624 p—jrnrOT 

where X  is the vacuum wavelength in microns.  The Rayleigh 

volume scattering coefficient is then 

and the Rayleigh phase function*- *   is 

Vv
s) ■ J-Ht I1 * T*r K) (516> 

where    u  ■  cos8 ■ cosine of scattering angle 

li      = number density of air molecules at 
s    760 mm Hg and 150C « 2.54743 x 1019 cm"s 

p  = depolarization factor 

N = number density of air molecules at p  and 
T of interest. 

The factor involving p  expresses the effect of the optically 

anisotropic molecules upon the scattering, and its value has 
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been calculated anc* measured by a number of investigators 

since the effect was first discovered (see Penndorf, Table II) 

Penndorf chooses  p  ■ 0.035 , which we shall use in our work. 

The number density N may be evaluated from the perfect ga? 

law as 

*-h 
where k is Boltzmann's constant, T is in 0K, and p is 

in compatible units. 

The scattering from aerosols in the atmosphere (in- 

cluding clouds) may be treated by the Mie theory.  This in- 

volves a certain degree of approximation, in that the Mie 

theory assumes spherical particles and natural atmospheric 

aerosols may not be spherical (although water droplets, the 

most important aerosols, are indeed spherical provided they 

do not have an appreciable fall velocity).  Also, the complex 

indices of refraction 

m = n -in (5.17) 
12 

of the aerosols, which are required by the Mie theor/, are in 

many cases not well-known, especially in the infrared 

Nevertheless, Mie theory, despite its well-known mathematical 

and computational complexities, is the only reasonable approach 

to aerosol scattering currently available. 

If a is the radius of a single spherical particle, 

having index of refraction m relative to the surrounding 

medium, then the scattering pattern of that particle for light 

of wavelength X can be described in terms of the following 

two functions: 
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n-l 
(5.18) 

1 • 
2 

n-l 
C5.19) 

where 

Zwa (5,20) 

ß - ma (5.21) 

cose. 

a (5.22) 

bn " t|;n(ß)c;(cx) - m Cn(a)^(ß) 
(5.23) 

%(M) ■ P^Cu) 

Tn(y) ■ vnTn(y) - (l-y2)Tr^(y)  . 

(5.24) 

(5.25) 

The P  are Legendre polynomials.  The \1)   .?  are called 
n       0     r ' n n 

Ricatti-Bessel functions, and are defined in terms of the more 

familiar spherical Bessel functions  Jn » 7« » etc. by 
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♦n(0 " ijn(z) 

xnfz) ' ^n^ 

tnW  " *»♦ iXn- zh^hz)     . 

For unpolarized incident light, the distribution of 

scattered intensity from the spherical particle is propor- 

tional to  i  + i  .An unpolarized incident beam is also 
12 

tacitly assumed in the form (5.16) of the Rayleigh scatter- 

ing pattern.  The full polarization-dependent treatment of 

radiative transfer, in which the intensity is replaced by a 

four-component vector and all the phase functions are re- 

placed by 4x4 phase matrices, involves a great deal more 

computing than the present method for a relatively small im- 
(17) provement in accuracy^  ' (the largest reported errors in I 

from neglecting polarization are about 10 percent, with more 

typical values being 1-5 percent).  Therefore, the present 

model will be constructed assuming every Mie scattering event 

produces only unpolarized light, of intensity proportional to 

i + i  . 
I     2 

The extinction, scattering, and absorption cross- 

sections for the spherical particle may be computed to be 

"ext -srE (2nn) ReCVV 
n=l 

o   " 4^- y* (2n+l)(la I2 + lb I2) sea  Zrf ^J  V   JK'  n'    ' n1 ^ 
n=l 

O .  =0    - o abs   ext   sea 
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Presuming that the atmospheric aerosol at a given 

height contains a number density N    of spherical particles, 
with a probability distribution n(a)  of radii such that 

n(a)da ■ fraction of particles with 
radii in (a,a+da) 

and 

t  max 
I     nCa)da - 1 
•'a mm 

then it can be shown that the volume scattering and absorption 

coefficients for this aerosol are 

ßv,M" Naer Z''"" °.ct<a> n^da (5-26) 
mm 

and 

av,M Naer T^^abs^ ^a5da C5'27) 
•^min 

respectively.  The phase function will be 

/: 

'a 
I,iax (i + i ) n(a)da 

a      1   2 

n . min 
max (i + i ) n(a)da 

1     2 
min /'•/ 
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where the integral over dß ■ dp d$  is an integral over all 

scattering angles; its appearance in the denominator guaran- 

tees the proper normalization of P M to 4TT .  From the ex- 
V j M 

pression for o _.  in terms of i  and i  , r sea i       2 

o A ?/! [V.) * v.']*"« sea " TiT /.(:- ^ ■   " 2 r>' r" S' 

and from Eq. (5.26), the phase function may be written 

■VM^ - TT^ f'"*  l1/"^ * W] "Wda .  (5.28) 

PR and P M may be combined as follows to yield the complete 

phase function for scattering: 

P « ßv,R PR ; ßv>M Py.M (5 29) 
v ßv 

where 

is the total volume scattering coefficient. 

Details as to the actual computation of i  , i  , 

S M , and P M are omitted here for brevity.  The Mie pro- 

gram has been coded and debugged using existing tables of Mie 

functions, and every effort has been expended to keep its cost 

minimal, in view of the fact that it is only one small part of 

the radiation program.  An elaboration of the numerical tech- 

niques used will be furnished in the final report. 
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5.2    BOUNDARY CONDITIONS 

As is clear from, for example. Figure 1.1 of Goody, ^ * 
the spectrum of solar radiation and the spectrum of terrestrial 

radiation overlap hardly at all.  Therefore, we will speak of 
the atmospheric radiation problem a<> two separate problems, and 
discuss the boundary conditions for each problem separately. 

5.2.1  Solar Spectrum 

The following data completely specify the boundary 
conditions for the solar radiation problem: 

• solar zenith angle 

• solar constant (flux of solar energy at the 
top of the atmosphere) 

• solar spectral energy distribution 

• albedo or reflection coefficient at the sur- 
face of the Earth. 

The solar zenith angle at any particular location on 

the Earth's surface is a function of the day of the year and 
the time of day.  Since time zones are so irregular as to be 
virtually meaningless, all times will be taken as Greenwich 
mean times.  Then the solar zenith angle  9  ero0,900] will **    sun L  '  J 

be computed from the four variables latitude, longitude, 
calendar date, and Greenwich mean time.  Leap years will be 
accounted for.  By having the capability to specify the solar 
zenith angle in this fashion, comparisons can be made between 
the model's predictions and experimental data gathered at any 

time in the past. 

The solar constant is still, surprisingly, a subject 

of debate.  The best values of both the solar constant and the 

solar spectral energy distribution seem to be those of 
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Thekaekara and his collaborators^-  ' which will be used in the 
present code.  The solar constant will be adjusted according 

to calendar date because of the vaiying Earth-sun distance, 
which can alter the solar constant .^Jj percent from its mean 

value.  Taking the origin of vertical coordinates  z = 0 
at the surface of the Earth, the solar boundary condition 

can be expressed mathematically as 

I U ',W»*) - S 6(1? - 8 „) vv o'   *rj v  ^    sun' 

for 

l<y<0 0<4><2Tr 

where  z  is the vertical coordinate of the "top" of the o r 

atmosphere and S  is the solar intensity at frequency y 
In terms of the azimuthally-averaged intensity, this is 

S 
I (z  y) = -r^- 6Cu -u) -l<u<0 vv o,H''  2u  ^^  Msun'' — M — 

where 

u   = -cos 9 psun       sun 

The sun is, of course, not a 6-function but has a finite 
angular width, of about Sj0.  A more realistic boundary condi- 

tion was used in the heating rate equation for no scattering 
to estimate the error of using the 6-function.  The conclusion 

was that the absolute error produced in the heating rate is 

always inconsequential (whereas the relative error in the 
heating rate could become substantial near sunrise or sunset, 
y > 0) . 
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The albedo of a surface is the ratio of the outgoing 

to the incoming flux.  Since intensities, not fluxes, are 

being calculated, the specification of the albedo alone is 

not sufficient.  The distribution of the outgoing or reflected 

intensity in angle is also required.  The assumption is often 

made that the Earth's surface is a "Lambert reflector," mean- 

ing that the reflected intensity is isotropic and unpolarized 

regardless of the angular distribution and polarization of the 

incident radiation.  Rough, irregular surfaces approximate 

Lambert reflectors.  If the incident flux, computed from the 

v,inc incident intensities, is FM inr.   ,  and the albedo (which may 

be frequei 

reflector 

be frequency-dependent) is A  , then for a Lambert or diffuse 

'v.ref " ^  C  "TvCO.M)^ - .^(O.y) - A^^ 

Thus, the reflected intensities  I (0,y) , 0 f. ^ 1 ! » are 

specified in terms of the albedo  A and an integral  F  .   of 

the incident intensities: 

IvC0,y) = 2Av / , ^vCO.y) dy 0 < y < 1  . 

Measurements of albedo indicate a more complicated 

situation than that described above.  On cloudless days, 

the albedo seems to be fairly constant for solar zenith angles 

6   ^60° , and to increase rather markedly as  6    increases 

from 60° to 90°.  In particular, this phenomenon is observed 

for the ocean and for desert and semi-desert areas.*-  •'  There- 

fore, let us define a directional albedo, or directional- 

hemispherical reflectivity, A (y) , which is the reflected 
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flux divided by (and due to) an incident flux from the direc- 

tion (9,4»).  (ee[00,900] is the angle to the surface normal.) 

Then if the incident intensity from direction i? is 

1^.(0,y,^) , -1 <^ y <^ 0 , the incident flux will be 

|p| iv(0,yf*) dn 

which will cause a reflected flux 

Av(|y|) |y| iv(o,ii,*) dn . 

Summing over all incident directions leads to the total re- 
flected flux 

Fv,ref '    J * d*    J    dv   \v\  AV(|M|) lv(0,ii,*) 

r0 
2* j      H Av(|y|) IvC0,y) dy , 

For a diffuse reflector, this implies a reflected intensity 

of 

Iv(0,v0 = 2 J  |y| Av(|y|) lv(0,y) dy  , 

(5.31j 

0 < y < 1 

Clearly, the directional albedo A (y) contains no 

information as to the angular distribution of the reflected 

radiation.  Such information is furnished in complete detail 
f 211 

by the bidirectional reflectivity Pv »    which is equal to 
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the reflected intensity I  _-r(6 ,♦ »Q..»«!' )  at angles  0  , 

4»  ,  due to an incident intensity I  jnrC9»*)  at angles 

0 , ♦ , divided by the flux of that incident intensity: 

^v ref^'*'8!-'^ 
Pv(0,*,0r,4.r) - lv>inc(0,*) cose dn • 

The various angles are defined in Figure 5.2. If the reflec- 

ting surface is Isotropie, as the Earth's surface largely is, 

p  will depend only on the difference ♦■"♦_, 

P.." P..(0.6,»♦"♦,.) •  Since  I.. „ - is of differential order v   v   r   r v,rei 
with respect to I  .   (except in the case of specular reflec- 

tion) , the dn in the denominator keeps  p  from being of 

differential order.  The factor -rr is introduced so that, if 

the reflection is diffuse (I. _Är independent of 6«, 4> ), P. v,re±    r T    TT''      v 
reduces to the directional albndo A, defined above. v 

x-axis 

Figure 5,2 - Geometry of reflection, 

The total reflected intensity at angles  0  , (j)  is 

found by summing I   f    over all possible angles  6 , 4> 

of incidence: 
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incident 
| angles 

' 'Uo  d*io   de sine Pv(e'er'*-V 

" ^inJ9^ cose . 

Phrasing this in our usual notation, 

I lv(0,y,*) - £ J  d*' J   dy'lu'l PvClv'l.w.*'-*) 

^(O^',*')   for    0 < y < 1  .        (5.32) 

Because p  must be periodic in its third argument, 

the azimuthally-averaged bidirectional reflectivity 

i  r2* 
Wo pv " I? /   PvC^.y'^-*1) d* 

can be reduced to 

'2-n 

'0 
Pv(:y.y

,) = 2? /  Pv(w»w
,,<t>) d(j> 
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which is independent of $' .  This result makes it possible 

to azimuthally average £q. (5.32) to yield 

lv(0,y) -  2  j     dp' |y'| p^Cly'l.y) lv(0.y') , 

(5.33) 

0 < y <^ 1  . 

This is the most general reflective boundary condition. 

For water surfaces, which cover about three-fourths of 

the Earth, computations of p  are possible in terms of the 

Fresnel formulas for reflection, the index of refraction 

m - n -in  of water, and a statistical distribution of 
1       2 

surface slopes (as a function of wind speed).  The work of 
f221 

Chow*" J   is exemplary in this regard, although he ignores the 

imaginary part n of the index of refraction in the IR and 

uses a frequency-averaged value of n in his computations. 

He also uses the simplest analytical approximation to Cox and 

Munk's^ ' experimentally-determined sea-slope distributions. 

We have replaced these approximations with more accurate ones 

and computed tables of p~" for use in Eq. (5.33). The tabu- 

lation is scmowhat simplified by the reciprocity relation for 

P (21) 

Pv(e,er,4)-<j.r) = pv(er,e,(|)r-(fr) 

which implies 

p^Cy.w') " p^y'.vO ■ 

It should be noted that only surface reflection is 

accounted for in the above computation of p  .  Backscattering 
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from turbidity (primarily micro-organisms) beneath the surface 

is not accounted for, although measurements in the Russian 

literature indicate that this effect is only important at low 
f241 solar elevations.v J 

The situation vis-fi-vis reflectivity data for land 
surfaces is much worse than for the sea surface (cf. Kondrat'yev, 

Ref. 24).  In general, only albedos are available, and often 

not even as a function of frequency.  Therefore, the code will 
have several options. All options will use Eq. (5.33); how- 

ever, if only directional albedos A (y)  are available, dif- 

fuse reflection will be assumed so that Eq. (5.33) reduces to 
Eq, (5.31).  If only albedos A  are available, it will be 

pre.-umed that A (y) - A  , independent of y . And, if only 

frequency-averaged albedos A are available, the code will 

take AHA.  Thus, as improved albedo data become available, 
they need only be entered into the appropriate tables and 

certain option flags re-set. 

At this point it is convenient to introduce an additive 
splitting of the downward-directed intensity: 

\ '  l!01" + ^iff  >   -1 < y 10  . (5.34) 

r^olar is the solar beam intensity, and  I^lff is the "diffuse" 

intensity produced by scattering and reflection (thermal emis- 
sion being practically negligible in the solar spectrum).  The 
reason for introducing this splitting is that the solar part 

of the intensity is essentially a 6-function in angle and so 
exceedingly difficult to represent numerically.  The remaining 

part of the intensity,  I    , is usually smoothly behaved as 
a function of angle and so will not require nearly as fine an 

angular mesh for its representation as the original intensity 
I  would have, v 
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' The solar beam intensity can be found from the trans- 

port equation in which only extinction processes are included: 

«rsolar 

1 < y < 0 

where ^ " 0v + ^v *  Proposing the boundary condition 

i;01" CVM) - I? «("-"»un)    •    -1 i V < 0 

leads to the solution 

Tsolar S£ «Cy-usun) expU £ icv(z') dz» 

1 < y < 0  . 

Introducing the splitting (5.34), with the above solution for 

I^0 ar , into the full transport equation, (5.9), one finds 

3ldiff 

M3z        VA V    V   J 

* ß. \     f    Pv(z,M,y') I^1" (z,y') dy 

a' * J    I      P^z^y') Vz.y') dy« - I^iff 

(5.35) 

3 S 
+ —j— P (z.y.y  ) exp 4Tr  v*- ^'^sun-*  ^ ir—   T0 %cz') dz' psun Jz 

for -1 < y < 0 , and 
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31 
<(.K - IJ 'JT '  »v^v  ■  % 

M*/    Pv(2'U'y,)  ^^   CZ,P,)  dy, 

jJo    PVC«.M. W')   Iv   (^P'O   dW1   -   I, 

0  S Hv v - 
* TT pv(,'','>1

>un' "P Msun ^z 
)  dz« 

:5.?6) 

for 0   < y  < 1   . 

The boundary condition on I     at the top of the 

atmosphere is now simply a homogeneous one, 

Tfff (x0.y) - Ö    ,    -1 i y < 0 . (5.37) 

The reflective boundary condition at the surface, Eq. (5.33), 

becomes 

Tv(0,y) = 2 J    |y'| pv(y,|y'|) lj
iff (0,y') dy' 

s 
+ T l^sun' Pv^'l^sun^ exP 'sun JO 

(z') dz' 

0 < y < 1  . (5.38) 
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The extra terms in Eqs. (5.35) and (5.36) are interpretable 

physically as scattering sources due to the solar beam; the 

extra term in Eq. (5.38) is attributable to reflection of the 

solar beam. 

A final boundary quantity, one of paramount interest, 

is the solar radiative flux into the ground, which determines 

the heating.  It is 

Fv(0) " 2Tr f ^(O.y) dw 
«/-1 

'  2v   I      yT^iff (0,y) dy + 2* J  pTv(0,y) du    (5.39) 

+ ^sun Sv exP u    I    V psun Jo 
Kfz') dz' 

When this is integrated over frequency and added to the total 

terrestrial radiative flux out of the ground, the resultant 

flux determines a boundary condition for a ground heating 

calculation.  If the flux is entirely absorbed within the 

first millimeter or so, as is the case for most land sur- 

faces, then it determines a surface heat source; if it pene- 

trates, as in the oceans and ice, a distributed heat source 

is determined.  A code which solves the heat condition equa- 

tion with prescribed sources has been developed at S3 during 

this contract period, and will be coupled to the radiation 

code for studies of the dynamic interaction of the radiation 

field and the surface.  It seems likely that the development 

of this coupled radiation-surface code will be only partially 

completed by the end of the present contract period, and will 

require further work in the follow-on period. 
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5.2.2  Terrestrial Radiation Spectrum 

The relevant data required to specify the terrestrial 

radiation boundary condition are: 

o the surface temperature, T 

o the surface emissivity e , possibly as a 

function of the angle (to the surface normal) 

8 of emission. 

The surface temperature T  is presumed either given 
O 

as an input variable or calculated by the ground heating code 

discussed in Section 5.2.1. 

The directional emissivity is defined as the ratio 

ihermally emitted intensity I 

direction to the black body intensity: 

of the thermally emitted intensity I (9,4»)  in a particular 

Me,*) 
ev(e,«) - B

V/TY  . (5.40) 
v ^ g-* 

We shall only consider Isotropie surfaces, so that the depend- 

ence on azimuthal angle (|) disappears, ev ■ ev(6) or ev * ev(vi) . 

If the emitted intensity  I  is independent of 9 ,  e  re- 

duces to the more familiar hemispherical emissivity (ratio of 

emitted flux to black body flux TTB (T ) ).  The hemispherical 

and directional emissivities have been measured for many 
f 251 

kinds of surfaces.^ *     The angular behavior of e  is similar 

for all electrical non-conductors (in particular, the Earth's 

surface); it is nearly constant and close to one for 9 between 

0° and 60°, then it falls off to zero as  9  increases from 60° 

to 90°.  This effect has never, to the author's knowledge, 

been included in an atmospheric IR radiation model.  Since the 

123 



.. 

3SR-795 

IR radiation is lisarly isotropic (except in the 8-12 y window 

region), substantial portions of it approach the ground at 

angles of 60° to 90°, and much more of this radiation is re- 

flected than a constant e model would indicate. The present 

model will incorporate a typical angular dependence e(p)  for 

non-conductor emissivities and use 

«v00 - ^0) OÜ0 (5.41) 

where t* '     is the hemispherical emissivity for the surface 

in question. 

The directional-hemispherical reflectivity A (p) , 

the bidirectional reflectivity Pv(y,;»_,♦-♦_) , and its azi- 

muthal average p^di.iO were defined in Section 5.2.1.. They 
(21) are related as follows:*- ' 

Av(y) ' * L      dMr / ^r »r  Pv^'^r'*-V 

X dyr Mr Pv(M.Mr) - 2 /  dy,. u    p(v,vj     - (5.42) 

Kirchoff's  Law allows us   to relate    A      and    e     , 

Av(y)  + ev(y)  -  1 (5.43) 

(21} 
which holds without restrictions.v J    Hence, if the reflec- 

tion is diffuse so that Eq. (5.31) applies for the reflected 

radiation, the surface boundary condition may be formulated 

entirely in terms of ev(y) , 
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lv(0.w) - ev(y) Bv(Tg) * 2 f    |y'l 

• [l - ^Clw'!)] Tv(0,y') dy«  , 

0 < y < 1  . (5.44) 

The first (emission) term comes from the definition (5.40) of 

emissivity. 

Only for water surfaces is the function p      obtain- 

able in the IR.  It is theoretically calculable as discussed 

in Section 5.2.1. From it we may obtain A (u) , and hence 

ev(y) , according to Eqs. (5.42) and (5.43). For such sur- 

faces, we will replace the second term in Eq. (5.44) by the 

exact result Eq. (5.33), eliminating the assumption of diffuse 

reflection. 

The boundary condition on the terrestrial radiation 

at the top of the atmosphere is homogeneous: 

MVp) " 0    '    -I   <V ±0    . (5.45) 

5.3    DISCRETIZATION OF THE TRANSPORT EQUATION FOR NUMERICAL 
SOLUTION 

The intensity  I  is a function of the three inde- 

pendent variables v , z , and y . The discretization of each 

of these variables in turn is discussed in Sections 5.3.1 

through 5.3.3. The actual numerical solution of the transport 

equation is treated in Section 5.3.4. 

5.3.1  v-Discretization 

In the regions of the spectrum in which line absorp- 

tion is important (which includes most of the terrestrial 
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radiation spectrum except for the S-lZy "window" region and 

the solar spectrum below 0.3M and above 1M) the absorption 

coefficient o  varies extremely rapidly with frequency. 

So, therefore, will the intensity, making it infeasible to 

solve for T  at a set of discrete v's because of the 

large number of v's that would need to be taken. 

Instead, we shall solve for the frequency-averaged 

intensities: 

hi*-* ■ v^1- vt /v
Vin V''") *- 

over an appropriately small number of frequency intervals 

^vi'vi+l^*  Because 0^ this, the integro-differential form 
(5.9) of the transport equation is unsuitable.  (It is not 

known how to approximate the integral 

•v. 
1+1 K Tv * ■ 

in which both o'  and I  are violently oscillating, in 

terms of I..) We Bust use the integral form (see Eq. (5.2) ) 

iv(z,y) 

for    M  >  0   .   and 

IV(0,M)   exp ?rKvci,)d2 

l/1 JV(Z",M) «pf-! f'sco iz< 

(5.46) 

dz" 
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Iv(z,vO " I
V(

Z
0»V) 

exP i r ^ )  dz 

i f Jv(z",iO e^f-H^vU') dz' dz"   (5.47) 

for y < 0 .  The source function is 

Jv(z,y) - a^Cz) Bv(T(z)) + SvCz,y) 

where 

KM   /-i - 
Vz^) - -T—J Pv(z,y,y') ^(z.y

1) dy« 

for the terrestrial spectrum, and 

Bv(z) f    Pv(z,y,y') Tj
iff (z,y') dy 

f    Pv(z,y,y') Iv(z,y') dy» 

sv - ( i 
2TT 'V' sun 'z r° ^ )  dz'! 

for the solar spectrum.  (For the solar spectrum,  I  should 

also be replaced by  I^   in Eq. (5.47) .)  Applying the fre 

quency averaging operator 
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+   J       B.CKZ"))    Zi    Cy,z",z)   j^y dz" 

If1 S.CzMi)   Ei   (y,z";z)   ^   Cy,z",z)   dz" (5.48) 

where by definition, 

zi  (li»z
1»z

a  )  " exP (z)  dz (5.49) 

Ti(y'VZ^^1^/v'i + leXP $ f* «iCOd« dv (5.50) 

and 

fiAz)    rl 
)   dp' (5.51) 
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for the  terrestrial spectrum, while 

ß (z) 

/.: 
P-Cz^u«) lfiff  (z.y») dw« 

+ /  P^z^^') liCz,*!') d».' C5.52) 

S. 
+ ^?i^^'vsun)   li  Cvsun'Vz) Ti^sun'zo'z) 

for the solar spectrum.  S.  is taken as the frequency- 

averaged solar flux 

r -       i        fVi Sv dv 

since this is the form in which solar spectral data is always 

presented.  The quantities ^i » ^j » '«  are t^e correspond- 

ing quantities  6 '  ^v   *  ^v    evaluated at the mid-point v. 

of the frequency interval. 
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The T.  of Eq. (5.50) are called transmission functions. 

An important approximation has had to be made in de 

riving Eq. (5.48), aside from the relatively trivial one of 

approximating the slowly varying (in frequency) functions B 

ß  , and P  by their values at the mid-point.  It is the 

commuting of the frequency-average with I (0,y) , and with 

T fZjii')  in the scattering term, and the replacement of these 

quantities by  l.(0,vi)  and 1.(2,^') .  In view of boundary 

conditions such as Eq. (5.44), the boundary intensities 

1^(0,p) may be rapidly varying functions of v (unless c =  1) 

Similarly, in the presence of substantial line absorption, 

I^C^fM1) will vary rapidly with v . This hurdle has re- 

sulted in two divergent bodies of independent research in 

atmospheric radiation; one school neglects scattering (e.g., 

Kyle, Ref.26 )» the other neglects absorption (e.g., Sekera, 

Ref. 27).  The primary thrust of the first school is the 

accurite calculation of the transmission functions T. .  Once 

these are known, and S. - 0 ,   £. - 1 , the numerical 

integration of Eq. (5.48) is almost trivial.  The second school 

concerns itself with techniques for solving the integral 

equation (5.48) when T. ■ 1 ,  B. • 0 (in which case the com- 

mutation of the frequency average with T (0,)j)  and 

T U,u')  is a valid approximation). To the author's know- 

ledge, no one in all the vast literature on atmospheric radia- 

tion has considered simultaneously line absorption and scatter- 

ing. 

The reason for this apparent lacuna is that, over 

large portions of the solar and terrestrial spectrums, either 

scattering or line absorption is dominant.  They might only 
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by comparable in magnitude in the near infrared region (l-Sy) 

where there are some weak H^O bands, and in parts of the 8-12M 

window region. Therefore, the error that we make in doing the 

frequency-average of the scattering term in Eq. (5.46) ^ill 

tend to be large in only a small fraction of the frequency 

intervals; presumably these errors will have little impact 

on the frequency-integrated flux of Eq. (5.14). 

A potentially serious approximation is the replace- 

ment of I (0,M) by I^O,^) , particularly in the strong IR 

absorption bands.  If, in Eq. (5.44), the emissivity 

indeed falls to zero over a span of angles of 30* or so, then 

the second term in that equation is not negligible. Since 

the incident intensities  I (O.u')  in that term will be 

rapidly varying functions of v , so will the reflected in- 

tensities, and hence  I (0,u)  itself. A mitigating circum- 

stance in favor of the approximation is that, in the strong 

IR bands, the surface boundary condition will become unim- 

portant after about the first kilometer or two; that is, the 

transmission function T.(u,ü,z) multiplying 1.(0,u) be- 

comes negligibly small for z > 1-2 km.  Nevertheless, one 

would hope to do the boundary layer correctly. Therefore, 

ways to skirt this difficulty are actively being sought. 

One possible avenue of approach is to revert to the 

integro-differential form (5.9) and attempt to deal with the 

integral 

vi*l - v 
- P*1 «' l    dv 
i -V    v  v 

(the frequency-averages of the other terms are trivial). 
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Defining 

rVi+i % i dv 

^   = —T  (5-53) 
dv 

the integral may be approximated 

ferjT1 l«iivdv- (!-• )aiii 
vi 

a.  is a function of both  z  and \i   ,  in general.  It also 

depends on the intensity, of course, which is the source of 

the difficulty. Nevertheless, by calculating a.  for vari- 

ous typical intensity fields in the atmosphere (obtained by 

detailed calculations) regularities might emerge which would 

allow us to pick a universal a-(ii,z) .  If this were possible, 

it would not only alleviate the difficulties discussed above 

but would actually be simpler to tabulate than T. , which 

depends on three arguments. 

The computation of the transmission functions T.  hos 

a long history.  The earliest attempts were based on band 

models, in which simple analytical representations of line 

strengths, positions, and shapes were assumed.  As accurate 
f 281 

line-by-line absorption data has become available,v  ' both 

from theory and experiment, transmission function computations 

have incorporated it.  Such detailed line-by-line transmission 

function computations are incredibly expensive in terms of 

computer time.  Considering that sometimes integration steps 
(291 

as small as 0.001 cm"1 must be taken1  ', and that the region 
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of significant absorption extends from 10,000 cm"1 (ly) to 

250 cm"1 (40u) , with only a few gaps, the magnitude of the 
f29l 

problem becomes apparent. As an example, Kyle*- ' used 15 

minutes of CDC 6600 time to compute transmission functions 

between a single pair of atmospheric levels  z and z   for 

a single value of y , and for the wavelength interval 

1.7y - 20u. Multiply this by the number of angles N  and 

by the number of pairs of levels %N.(N.-1), and the computing 

time to obtain a complete set of transmission functions be- 

comes truly formidable (for 6 angles and 15 levels it would 

be 157S hours).  Fortunately, transmission functions are not 

terribly sensitive to the temperature profile , and so could 

be tabulated once and for all for various standard profiles 

(tropical, mid-latitude, polar, for summer and winter, for 

example).  This would restrict us, however, to always using 

the same pressure levels and angles, which could be a large 

disadvantage. 

In view of the expense, in terms of both human and 

computer time, of generating transmission functions from 

scratch, we have decided to take advantage of the scheme of 

McClatchey, et.al./  ^ for generating these functions. 

It falls into the category of an empirical fit to known data, 

and is the most sophisticated in a long line of such empirical 

fits.^31^32) McClatchey has used detailed line-by-line 

absorption data to compute transmission functions for 20 cm'1 

fk"i 
intervals, then has fit them with empirical functions  fv ' 

such that 

tjw CU.VS)  . ,00 (*,(»)) . 

* 
Kyle, private communication. 
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The superscript k refers to molecular species; there are 

separate f's for the uniformly mixed absorbers  (C02, N-O, 

CH., CO, Oj,  N»), for water vapor, and for ozone.  The single 

fk") argument Awv '  is an attempt to sum up the information con- 

tained in y,z , and z  into a single "effective absorber 

amount" along the slant path in question.  It is calculated 

according to empirical prescriptions which best fit the real 

data; the variable mixing ratios of H^O and 0- are taken 

into consideration in these prescriptions.  The total trans- 

mission function is the product of the individual ones 

which is an approximation also, but an excellent one according 

to several authors.^-  ■'  ' The functions  f^ '  are tabulated 

in a subroutine called LOWTRAN which we have obtained from 

McClatchey and implemented on our computer. 

While McClatchey's transmission functions will be 

used, it would be desirable in the longer range to develop a 

code which could generate its own transmission functions di- 

rectly from the raw absorption data. Among the advantages 

of this are: 

(1) frequency intervals Av could be chosen 

as desired. 

(2) improvements in the raw absorption data 

could be readily incorporated; and 

(3) the approximation of an "effective absorber 

one (the Curtis-Godson approximation^ '   for 

amount" could be replaced by a more accurate 

one (the i 

example). 
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We have already had discussions with both Kyle and McClatchey 

about the possibility of obtaining their absorption data and 

transmission function generators.  They have both mentioned 
the high cost in terms of computer time to generate trans- 

mission functions from scratch, but in the interests of a 
definitive radiation calculation we believe these costs 
would be justified.  However, for the present time we have 
deferred these discussions in order to pursue other aspects 
of the code development. 

5.3.2  p-Discretization 

The angular variable  y  appears both as a parameter 
and as a variable of integration in the transport equation 

(5.9) or Eqs. (5.46) and (5.47).  Because measurements and 
theoretical computations all indicate that the terrestrial 

radiation intensity and the diffuse part of the solar inten- 
sity  (I.1  ) are fairly smooth functions of angle, these 

intensities may be represented by their values at a rela- 
tively few angles |i. , 1 ■ 1, ... v N .  In order to do the 
flux integrals, Eq. (5.11), the intensity will be assumed to 
vary in a piecewise-linear fashion (I ■ I* ' ♦ yl^ ') between 
the points  y.  at which it is calculated.  To ensure consis- 

tency, the scattering source integrals 

will be done under the same assumption, 

V1    .. 
n-1   wn 

EAO)      jCO) f (1) Al)    1 
4ijk.n i,j,n Hijk,n i,j,n 

n-1  l J 
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where the moments q    of the phase function are defined as 

^n 

The moments q    , q^ '  are to be computed and stored be- 

fore the calculation of the intensities begins.  It is perhaps 

worth noting that P.  will have to be computed over a finer 

angular mesh than y.  in order to ensure accuracy in the 

numerical integrations leading to q ' » q   . 

An exception to the statement that  I.1   varies 

smoothly in angle occurs when there is substantial aerosol 

scattering. Aerosol scattering notoriously produces a strong 

forward peak in the scattered intensity.  This forward peak 

is almost as troublesome numerically as the solar beam it- 

self (which we eliminated by the splitting of Eq. (5.34) ) be- 

cause it necessitates a dense mesh of angles around the solar 

angle nsun •  Therefore, we shall use a method, tested by 

Hansen/ '   in  which the radiation scattered into a narrow 

forward cone, say ±2°  about the forward direction, is re- 

garded as unscattered. Mathematically, this amoants to 

truncating the forward peak from the phase function P fz.u ) 

and decreasing the scattering coefficient 0  accordingly. 

For dust and haze, which are optically thin, this seems like 

a reasonable procedure; in clouds, on the other hand, there 

might be a cumulative error after many scatterings which is 

not small. Hansen shows this not to be the case, however, 

and so the method is fully viable for all types of aerosols. 

S.3.3  z-Discretization 

Pressure coordinates p-  will be substituted for 

elevations  z.  in the mocel by making the hydrostatic 
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assumption, 

dp ^ -pg dz 

This will facilitate comparison with the GCM's and agrees 

with general meteorological practice. 

There is no discretization of the pressure coordinate 

which is ideal in all regions of the spectrum. The fundamen- 

tal criterion for vertical zoning is that the source function 

J  may not change substantially from zone to zone.  If it 

did, interpolations necessary to do the J  integrals in 

Eqs. (5.46) and (S.47) would be too inaccurate.  In the 

infrared, this means that B (T) (and therefore T) and the 

transmission function T.  may not change substantially be- 

tween any two zone centers.  Since 6°/km is a typical lapse 

rate, zones should probably not exceed 2 km in width.  Kyle, 

in hli IR model^ ', used 15 2-km levels surmounted by a 

sixteenth level from 30 km to the top of the atmosphere.  In 

most of the solar spectrum, on the other hand, a much coarser 

vertical resolution could be tolerated, since, except within 

aerosol layers, the scattering source varies considerably 

less rapidly with height than B (T) . 

' hese considerations suggest that a dynamic assign- 

ment of zoning structure would be highly desirable, based on 

an examination both of the source function and the spectral 

interval involved.  In the case of the scattering source 

function, which involves the intensity, we would examine 

the scattering coefficient ß  and phase function P  in- 

stead.  In absorption-dominated spectral intervals, we will 

zone so that the relative change in temperature T and trans- 

mission function T.  from zone to zone will be bounded.  In 

scattering-dominated spectral intervals, we will zone so that 

the relative changes in ß  and P  (at selected pairs of 
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angles y » y') are similarly bounded.  In spectral intervals 

where absorption is comparable to scattering, both T , T. 

and ß  , P  will be required to be bounded in their zone-to- 

zone variations. 

Aerosol layers, particularly clouds, will be much 

better resolved by such a zoning scheme than they would be by 

problem-independent schemes (e.g., fixed 2-km levels).  By the 

same token, zones will not be wasted in regions across which 

very little is happening to the radiation field. 

The problem with such a dynamic zoning scheme is that 

the fluxes F. in different frequency intervals i will not 

be calculated at the same levels.  By the very nature of the 

J dynamic zoning scheme, however, the individual fluxes F^(Zy) IK 
will not vary greatly between z.  and z.+1 ; therefore, a 

. .       polynomial interpolation scheme (a parabolic fit, for example) 

can furnish F.(z) at any intermediate level between z.  and 

z. , . Hence, the various fluxes F.(z.)  can be reduced to 

common levels  z,  prior to summation over frequency, 

F(zk) -X,W  • 

This dynamic zoning scheme is compatible with 

McClatchey's transmission function method discussed in Sec- 

tion 5.3.1.  It would also be compatible with exact trans- 

mission functions, precomputed for specific levels  z^ ^ , 

for such functions would vary smoothly enough with level 

that they could be interpolated to the levels of interest. 

5,3,4  Numerical Solution 

The basic method for the numerical solution of the 

transport equation will be discrete ordinates with scattering 

iteration. 

II 
Li 

»i 
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The discrete ordinates method was first proposed by 

Chandrasekhar.^37J  it involves fixing the angle,  y = y. , 

in the integral form (5.46) and (5.47) of the transport equa- 

tion and integrating from one boundary to the other in dis- 

crete steps  Az .  The method is simply ray-tracing, account- 

ing for sources and sinks along the ray trajectory (and, 

incidentally, ignoring the slight bending of the ray due to 

refraction). 

The Planck function B (T(z))  in Eqs. (5.46) and 

(5.47) is to bo interpolated linearly in  z-space between 

points  z.  at which it is known, for purposes of doing the 

z-integrations in (5.46) and (5.47) numerically.  This en- 

sures that the diffusion limit of radiative transport will 

be recovered.  To see this, suppose there is no scattering, 

that K . * a is independent of z , and that we are suffi- 

ciently many optical mean free paths from the boundary that 

the boundary term in Eq. (5.46) is negligible.  Then 

M2'^ *$ fj ** Bv(TCzM)) exp - ~ (w1) dz' 

A partial integration leads to 

Iv(z,v) BV(TU)) - B /T(0)) exp 

L 
z dB 

JT* exP 

y v 

±*iU-z") dz' 

We neglect the second term on the right-hand side because 

the optical path from the boundary a'z is assumed large 

In the third term, if B v is linear in  z" , then 3B /3zM 
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is constant,   and 

3b 
rv(i.M) -iv(TU)) - ^^ 

v 

This is the diffusion approximation. 

The scattering iteration process can best be ex- 

plained by writing Eq. (5.46) schematically as 

'v ■ »o 4 l"vJ 

Into I  we have lumped all the known terms (the ones not 

involving I).Lisa double integral operator operating 

on I  and L(IV)  is the scattering source term.  The iter 

ation we shall use to solve this equation is simply 

T(n+1) - I  ♦ Ld^) 
V O     v V ' 

where the initial iterate is 

T(0) 
v     o 

f 371 
This process is known to always converged  ' Furthermore, 

when there is a significant amount of absorption the con- 

vergence is rapid.  On the other hand, if absorption is 

negligible, as for visible radiation in a water cloud, and 

there are many mean free paths of scattering, convergence is 

painfully slow.  This can, to some extent, be circumvented 

by initializing the intensity in the scattering-thick region 

not from  I  , but from one of the two famous analytic approxi 

mations which are attached to the names of Eddington and 

Schwarzschild, respectively.*-  '  A variant of this technique 

has, in fact, been successfully applied ac S% . 
140 
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The radiative transfer code will be included in a 

realistic boundary layer code that has been developed under 

this contract. This ooundary layer code is described in Ap- 

pendix E. The coupled code will provide an opportunity to 

evaluate radiative effects in comparison to ordinary thermo 

dynamic effects (latent heat transfer, etc.) in the atmos- 

phere. 
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6.  FUTURE STUDIES 

This section of the report will attempt to outline 

further code development, modifications, and application of 

these codes to test prob lens which will be attempted during 

the next six months of this research contract, 

6.1    HAIFA CODE DEVELOPMENT AND APPLICATIONS 

Investigations now in progress will be completed. 

These include: 

(1) Further test and modification of the ver- 

sion of HAIFA incorporating compressibility, 

(2) Further test of the version of HAIFA in- 

corporating moisture effects. 

(3) Further modification of the Poisson solver 

to include non-cyclic inlet and outlet 

boundary conditions. 

Several modifications to the HAIFA codes will be made 

in order to study phenomena which are not yet understood com- 

pletely. Among the major code developments will be: 

(1) the addition of a turbulence scheme to 

the basic HAIFA code, and 

(2) the addition of Coriolis terms to 

determine their importance in mountain 

wave problems on the meso-scale. 
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It is also desirable to take account of effects in three 

spatial dimensions.  It will not be possible, however, to 

develop a code and carry out such calculations under the 

current contract; the scope and magnitude of the problem 

will be investigated for future consideration. 

Additional calculations to be performed during the 

remaining period of the current contract include: 

(1) Investigation of the effect of mountain 

shape on lee waves, and 

(2) Calculation of a problem using a fully 

compressible code for comparison with 

a standard problem calculated with HAIFA. 

These results and those from previously calculated cases will 

be analyzed more quantitatively to characterize the momentum 

and energy transports. As a part of this analysis, the 

perturbed pressure field will be calculated through solution 

of the governing Poisson equation. 

The final two months of the contract period will be 

spent in analyzing and attempting to parameterize the results 

of the many calculations in such a manner as to be useful in 

the global circulation model calculations. 
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APPENDIX A 

DERIVATION OF BOUSSINESQ EQUATIONS 

The conservation equations governing macroscopic fluid 

■otion are frequently simplified for problems of thermal con- 
vection by introducing certain approximations which are at- 

tributed to Boussinesq.  These approximations can best be 

summarized by 

(1) fluctuations in density which appear 

with the advent of motion result prin- 

cipally from thermal (as opposed to 

pressure) effects, and 

(2) in the conservation equations of mass 

and momentum, density variations may 

be neglected except when they are 

coupled to the gravitational accelera- 

tion in the buoyancy force. 

These approximations are examined in the derivation of equa- 

tions presented below. 

The general equations of mass and momentum conserva- 

tion are 

Q  - .pv-V (A.l) 
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dV pir '  '7P* V,p " P«k (A.2) 

For purposes of this derivation the viscous stress tensor P 

will be dropped from the equations. The equation of state 

will be assumed to be of the form 

P ■ P(P,T) (A. 3) 

The basic approximation to be made may be examined by the fol- 

lowing procedure: 

(1) Let f represent any one of the state variables. 

It will be expressed in the following form 

£ " fm * foC^ * f'Cx.^t) (A,4) 

where 

space average of f 

f0(Z) 

f (x,z,t) 

variation of f in the absence 
of motion 

fluctuations in f resulting 
from fluid motions. 

(2)  If a scale height is introduced as 

H(f) 
1 dfo -i 

(A.5) 

the basic approximation is that the fluid be confined to a 

layer whose thickness, d , is much less than that of the 

scale height  (d << H) . 
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j In particular, Eq. (A.5) implies that  d/H(p) « 1.  On inte- 
grating this latter condition over the layer, one concludes 

that 

Apo 
T-^1 t « 1  , (A.6) 

where  Ap^ is the maximum variation of pÄ across the layer. o o ' 
It is also required in non-linear investigations to 

make the additional restriction that the motion induced fluc- 
tuations do not exceed, in order of magnitude, the static 
variation, i.e., 

£l 
p« 

< 0(E)  . (A,7) 

Condition A.7 must be verified a posteriori from solutions 
of the problem.  In the absence of motion and introducing 
Eq. (A.4), the vertical component of Eq. (A.2) is 

An 

TT '  "«pm ■ «po * (A-8) 

Introducing the hydrostatic relation into Eq. (A.2), we have 

P(|Y 
+ v-Vv) ■ -Vp' - gp* k  . (A.9) 

We may introduce Eqs. (A.4) and (A.6) into the continuity 
Eq. (A.l) to obtain 

7.7 » -(1^ + 7.v)(e^- ♦ £-) + 0(e2)  .        CA.10) 
o    ^o 

A3 



z 
n 

. 

3SR-795 

Hence to order e , Eqs. (A.9) and (A.10) may be written 

IT 
+ v-77 - - i- vp» - ge^- k (A.11) 

wm Ko 

V«v = 0 (A.12) 

In Eq. CA.ll) we have retained the term geCp'/Zto) k even 
though it contains c as a factor.  This procedure is 
necessary if we are to study convection problems in the 
Boussinesq approximation, and the following justification may 

be made:  The quantity yr- measures the characteristic 
acceleration of the fluid.  Now the system is driven by 

fluctuations of the density field, and hence we must insist 
that the characteristic acceleration be of order  Cgcp'Mp ) . 
This, in turn, forces the conclusion that the acceleration 
of gravity is always much greater than the characteristic 

acceleration, i.e.. 

££1 ^ m 
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APPENDIX B 

WATER PRODUCTION TERM 

The water productioi term consists of three physical 

phenomena which can add to, subtract from, or change the state 

of the water in the atmosphere. Thus the production term P 

is written AS  the sum of C*) the evaporation of rainwater out- 

side of the cloud, ß(r-r } ; (2) the conversion of cloud 

water to rainwater; and (3) the accretion of cloud water by 

rainwater, S  ; '  a 

Pr - BCr-rsl 
+ Sc + Sa (b,l) 

where    ß  is the evaporation parameter and is 
assumed constant, 

S   is a linear function of the cloud 
water content; and 

S   is a variable dependent on both the 
a  cloud water content and the rainwater 

content. 

(T) The expressions for S„ and S„ , taken from Orvillev ' are: r c      a ' 

Sc = a^c " Acr) CB.2) 

Sa = 4.6 x 10"3 Äc(Är)
0'95  .        CB,3) 

Bl 
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Orville has run test problems using ranges of the constant 

a fro« 10* sec'  to 2 x 10" sec' and values of I , from 
-4     -1 cr 

0 to S x 10  gm gm  . 

Variations of these parameters and their values will 

also be studied as part of the research on determining the 

moisture effects on mountain lee waves and/or the drag force 

on the air flow. 
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APPENDIX C 

EDIT QUANTITIES 

The momentum flux (wave drag) associated with gravity 

waves is fundamentally different from other known momentum 

transport processes like surface frictional drag inasmuch as 

it may act across deep atmospheric layers.  Sawyer^- ' 

pears to be the first to have pointed out that in stratified 

flow the pressure is systematically higher on the upstream 

side, resulting in a drag force on the obstacle, and a cor- 

responding drag of opposite sign on the air stream. 

For steady flow over an obstacle, Vergeine.^ J 

shows that the equation for horizontal momentum, Eq. (2.1) 

may be integrated over a slab between the mountain and a fixed 

height H to give a drag on the mountain equivalent to 

/L .H x»L 

(puw)2-H dx -  I  (p ♦ pu2) dz       (C.l) 
L •'obstacle      x- -L 

height 

where L and  -L  indicate lengths upstream and downstream 

from the obstacle.  If  (p ♦ pu2)  is the same for upstream 
and downstream  (L -» •) , the momentum flux j_m  puw dx is 

constant as a function of  z and equal to the drag.  In the 

linearized case, the drag may be transformed by using the 

linearized equation for horizontal momentum into 

Cl 
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-pit)   j  u'W dx - -p0 /  uST dx (C.2) 

where the o subscripts indicates values taken at the surface 

of the mountain. 

The problem we are concerned with in the research is 

the calculation of a drag for the air flow over a mountain 

where the numerical calculations are not capable of being run 

to steady state values. The quantities presently being edited 

from the results of the numerical calculations are 

.1  u'w« 2LI  u'w1 dx    or    u'w iu i 

where 2L is the distance of the horizontal grid. The quanti- 

ties u'w* have been obtained by two different methods. 

Initially, an averaging method was used, i.e., u* was found 

from 

where 

u' • (ui^ ♦ ui*ij)/2 " " (C-3) 

»•TE 
(ui,j * ui*ij)/2 ■ 

i-1 

v' was found as (v. . ♦ v. .J.1)/2 .  In thi 

the cell-centered velocities were found and then 

s manner, 

C2 
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« fL 
21   I  u dx 

was calculated by averaging the product of the two perturba- 

tions velocities over the horizontal grid length. 

The second Method of finding the drag consisted of 

editing Crow ley's second order scheme to find the vertical 

flux of horizontal momentuo.  Crow ley's scheme for the moraen- 

tun flux is written in finite difference form is 

By averaging this quantity over the horizontal grid the result 

is just equal to the product of the horizontal and vertical 

perturbation quantities. This follows by noting that 

I I   

TE vi.j VJ * TE V1J (uij + "ij) ■ viJ "ij-ccs) 
i i 

A comparison of these two methods shows essentially 

identical results. 

The results as described above for the problems com- 

pleted to date are given in Section 4 of this report.  In order 

to attempt to understand these results, various lengths of the 

horizontal average were used in obtaining values of u'w' . 

These results are also discussed in Section 4. 

C3 
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APPENDIX D 

HAIFA CODE LISTING 

A listing of the HAIFA code which is presently oper- 

ating on the UNIVAC 1108 at Systems, Science and Software (S1) 

is included in this appendix. The advection scheme is second 

order only in this version of the code. Working versions at 

S1 allow either second order or fourth order schemes. 
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APPENDIX E 

A COMPUTER CODE FOR THE ONfi-DIMENSIONAL 
BOUNDARY LAYER 

E.l    INTRODUCTION 

• The radiative transfer task of the Climatology con- 

I        tract calls for the development of an accurate numerical 

scheme and application of it to the thermodynamics of the 

| atmosphere and soils. Ultimately, this scheme is to be used 

to perform calibration calculations of the radiative sub- 

routines of General Circulation Models of the Earth's Climate. 

In order to develop a realistic radiative transfer 

code syslem it is also necessary to take account of effects 

which strongly influence the thermodynamic state of the at- 

mosphere.  By virtue of its strong influence on long wave 

radiation it is important to take account of water vapor and 

cloud moisture in the atmosphere.  In addition, the state of 

the lower atmosphere is strongly influenced by turbulent trans 

fer.  Consequently, we have formulated and are testing a 1-D 

computer code to evaluate changes in the atmosphere resulting 

from the effects of radiative transfer, Coriolis force, turbu- 

lent momentum, heat and moisture transfer, and subsidence. 

E.2    FORMULATION 

The formulation depends only on the vertical coordi- 

nate and corresponds to an atmosphere in which all properties 

are horizontally homogeneous,  The atmosphere is described by 

El 
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the eastward horizontal velocity component u , the northward 

velocity component v , the temperature T , and the relative 

humidity q , each of which m.?y depend on the vertical coordi- 

nate z . The atmosphere is assumed to be instantaneously 

in hydrostatic equilibrium but changes in temperature result 

in a vertical subsidence velocity w . Pressure gradients 

in the horizontal directions are also taken into account but 

they are assumed to depend only on z . 
« 

The 1-D description of the atmosphere and the hydro- 

static approximation permit the use of a Lagrangian formula- 

tion in which the atmospheric pressure is a convenient measure 

of the mass of the atmosphere above the mass element in ques- 

tion. The altitude above the surface z and the pressure p 

are related by 

. . 

li 
- • 

*■ 

-^r1 
8 A 

o d£ 
P 

(E.l) 

where the density p is to be determined from the equation 

of state, and p  is the atmospheric pressure corresponding 

to the surface z ■ 0 , 

The equation for the transient boundary layer have 

been treated by many authors, e.g., Estoque,*-  ■' Pandolfo,*- ■' 
and Sasamori.*» ■' We choose to employ the temperature as 

dependent variable, rather than potential temperature, because 

temperature is more closely related to the radiative properties 

which form the most important aspect of this investigation. 

Using the pressure independent variable the equations are: 

E2 

mm^m 
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r 
r 
r 
I 
I S -f(u-ug) ♦ .'p^ (Kvp^) 

I S-(lf-«)^.'»|p(v^)-«^ 

i        Quantities appearing in Eq. (E.2) are given by: 

I 
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(E.2) 
3K, 

QUANTITY      SYMBOL   EQUATION    REMARKS 

density      p       " ir       determined by equation 
K1       of state 

dz ■ -rz-       Lagrangian derivative 
az of altitude 

■ 2 nsin$ $ is latitude; ft is 
angular velocity of 
Earth 

vertical w 
velocity 

Coriolis f 
parameter 

Geostrophic 
wind 

Ug 

Vg 

Adiabatic r 
lapse rate 

Radiation F 
flux 

Turbulent K 
diffusivity 

* - 4— |£   y is north-south distance 

* i— *J£    x is east-west distance 

* 5—       g is gravitational con- 
p       stant; C is specific heat 

of air P at constant 
pressure 

to be determined in radia- 
tive subroutine 

to be determined in 
k-subroutine 

E3 
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The indicated time derivatives in Eq. (E.2) are to be formed 

at constant pressure; consequently, they are Lagrangian deri- 

vatives in that they evaluate changes associated with a par- 

ticular air mass element.  The advection term associated with 

vertical motion is included in these terms. 

E.3 EDDY DIFFUS1VITY 

.. 

The coefficients of turbulent transfer which appear 

in Eq. (E.2) has been developed through a combination of 

theoretical considerations and empirical observations. A 

number of expressions for these quantities are available 

representing different weightings of the data and greater or 

lesser sophistication in incorporating theoretical considera- 

tions. 

Several of the investigators assume that the four eddy 

coefficients are equal in the two momentum equations and the 

temperature and relative humidity equation.  Such is the case 

in the work of Sasamori^- ■' who uses the eddy diffusion coeffi- 
cients developed by Yamamoto and Shimanuki.^ -' The same 

(El) 
assumption is made by Es toque, et.f.l.v ' who attribute their 

expression to Blackadar.*- •'  In jur current work we use the 

prescriptions of Pandolfo^ *  who has modifi.'.d the Monin- 

Obukhov formulae as presented by Kitaigorodsky.^E6J  Pandolfo 

takes account of differences between the coefficients for 

momentum exchanges and those of heat and moisture.  He also 

imposes limitations on the magnitude of the coefficients cor- 

responding to the case of extreme stability. 

The expressions for the exchange coefficients are; 

Inversion Conditions  (Ri > 0) 

u Kv " KT K = k2CZ+ZJ 
g    v  o' 

3U 
37 (1+aRi) CE.3) 

E4 
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Lapse Forced-Convection Conditions  (-0.048 £ Ri £ 0) 

2|3U Ku- Kv- k«(2*Z0)MfJ (1-oRi)2 (E.4) 

KT - Kq - Ku (l-oRi) 
-2 

Lapse Free-Convection Conditions  (Ri < -0.048) 

1/2 Ri I-1/6 

k - 0.4 

a -   -3.0 

c ■ W (f )a - 
h ■   (0.4)2 ,1)3/2 

Ri SfäT F  +  0.61T 3ql  / 3u 

The above values of K are to be restricted in range 

in order to avoid unrealistic conditions. According to Pandolfo, 

the K-values should lie within the following ranges: 

104 < K < 107 cm2/sec 

102 < K < 107 cin2/sec 

if 

if 

z > 100m 

z < lOOm  . 

E5 
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Computed values falling outside of the above range are replaced 

by the adjacent bounding values. 

Clearly, these exchange coefficients are incapable of 

taking into account such effects as penetrative convection and 

advection of turbulence, being formulated on the assumption of 

steady state conditions. We hope to be able to take account 

of these effects in the future. The influence of penetrative 

convection has been estimated by Deardorff^ ^ and Estoque.^ ^ 

Dynamic effects of turbulence have been treated in varying 

degrees of rigor by Pr 

and by Donaldson.'E11^ 

degrees of rigor by Pritchett and Gawain/E9^ Harlow, et.al,,   ^ 

E.4    DIFFERENCE EQUATIONS 

The Eq. (E.2) are solved as a set of coupled difference 

equations in time and space. The difference formulation must 

satisfy requirements of accuracy, stability, and computational 

efficiency.  Several considerations affecting accuracy, stability 

and efficiency ; re discussed below. 

Large shear of the horizontal wind in the lower portion 

of the atmospheric boundary layer results in rapid transport 

by turbulence and correspondingly large transient adjustments 

in response to perturbations of the boundary layer.  In order 

to take account of this turbulent transport in a computationally 

efficient way we have formulated the equations implicitly; the 

result is an unconditionally stable numerical integration 

scheme which permits the time interval to be chosen in accord 

with accuracy considerations.  The alternative explicit formu- 

lation imposes the requirement that the time interval satisfy 

the inequality 

E6 
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In the lower boundary layer, the time interval permitted by 

the ttbove expression will be very small; the diffusivity K 

is large and the desired pressure interval Ap will be small, 

The implicit formulation which we have selected (discussed 

below) requires some additional calculations to solve the 

sets of simultaneous linear equations. However, the result 

is a system of equations which are stable for very large time 

intervals. Time intervals are determined almost entirely by 

considerations of accuracy. 

The changes in the wind, temperature and relative 

humidity are concentrated predominantly in the lower layers 

of the boundary layer. From the standpoint of the accuracy 

and efficiency of the numerical integration it is very de- 

sirable to introduce more zones in the region of rapid change 

near the ground than higher in the atmosphere where much 

smaller changes occur.  In order to achieve spatially vari- 

able resolution with accuracy it is necessary to consider 

carefully the difference formulation.  In the following 

scheme the difference equations retain second order accuracy 

in regions of variable spatial intervals. The resulting 

system of equations is capable of representing the atmosphere 

accurately through the use of a finely resolved layer in the 

lower boundary layer and increasingly coarse resolution in 

the higher atmosphere. 

We now consider the difference equations correspond- 

ing to Eqs. CE'2).  The equations are to be solved for the 

primary dependent variables,  u , v , T , q on a discrete 

mesh on both of the indpendent variables, pressure p and 

time  t .  The resulting difference equations are to be 

solved by marching the solution forward by successive incre- 

ments  At of the time.  In order to use a closed-form solu- 

tion of the implicit system, we linearize those terms of the 

equations which depend on the advanced time. 

E7 

■ ^M ■MWH^HaaiiMi 



11 ■■"■■■'■    i  mmnni-im^mmwmmmmtmmt^mmmmmmmmm'm 

I 
I 3SR-795 

11 

We denote  a discrete value of the  time by superscript 
n   ,  i.e.,  tn      ■  tn ♦ Atn   .    The atmospheric pressure  is par- 
titioned into intervals    Api    such  that    pi  .   ♦ Apj  ■ pi+.    . 
The difference equations  corresponding to Eqs.   (E.2)  are: 

.n*l u n 

At' 
fKn ■ vi) ♦   0. wU ^♦1 

APi*l + APi 

vn+1   - vn 
vi vi 

u"41  - u11*1 

wU J—— 

At n 
;(-..i ■ -n * fif  rt1

n ill 
-  v n*l 

Ap i + 1 Ap. 

(E.6) 

u 
wU 

n+1 
vi ri-l 

APi  ♦ Ap..^ 

n Tn+1      T li      '  ll 
At n 

rau T-n 

Api 

+ oT   (K- 

•     \       o"   / 
wi) " TgT\*lti*H ' KT,i-Ji) 

pn+1 
i+1 

.n+1 .n+1 

(E.7) 

rn+l 
i-1 .n        i + l i ,v ^n        i i-i 

Tp)i+k ^PM-II   
APi+l  +  APi APi  + Api-1. 

" » £8 
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(B.9) 

In the above oquations we have defined 

Zg'pJ 
'I'TpI 

and the diffusion coefficients are to be evaluated from 

Eqs. (E.3) through (E.5) using appropriate centered difference 

representations of the dependent variables from cycle r. 

The density is obtained from the equation of state as 

follows: 

Ji*l 

RT 
Pi 

where 

Pi e ^Cp^j, + Pi.jj)  • 

The altitude corresponding to the pressure also depends on 

time by virtue of the hydrostatic readjustment of the vertical 

column under the changing temperature: 

E9 
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1  Ap. 

~i  pk 

where I Is the maximum value of 1 corresponding to the 

zone adjacent to the ground. 

The vertical velocity is obtained as a difference 

w n*l „ ^i 5 
1     Atn 

» 

where 

Considering the above as a system of simultaneous equations 

for the unknown quantities uj  , vj  , ij*  , gj* , we 

note that the equations are linear and are uncoupled in the 

following way: The T-equation and q-equation are not coupled 

to each other or to the u or v equations; the u and v equations 

are coupled together through the Coriolls terms. Consequently, 

the T and q equations can each be represented as a tri- 

diagonal equation for a scalar quantity. The u and v equa- 

tions, however, are conveniently represented together as a 

tridiagonal system of equations for a vector quantity having 

the two components u.  and v. . 

The scalar equations can be represented in the form 

Ai ♦i + 1 ♦ B^. + C. ♦i_1 - D.  . (E.10) 
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For the T-equation, 

and 

♦i 
„n+l 
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Ai 
Api+1 ♦ Ap. 

Bi - 1 - Ai • Cj  , 

Ci- ^ APi + Ap^ 

Di r At 
Api 

A Ti g (KT,i+l ^»i-Jj^ 
+ T n •    A 

For the q-equation, 

and 

A - on+1 

q;  AtCKqp);^ 

Api+1 + Api 

Ell 

  -^—i^-^-t^mfa 
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C. 

Bi  ' ^  " Ai  "  Ci     ' 

i  "      » APi  +  APi.i 

1       Hi 

The vector equation can also be represented in the form of 

Eq. (E.l) where 

/l.n*l, 

■' ■ C-.) 
.. 

is a vector quantity and the coefficients are matrices having 

. ,        the form 

Li 
"■G* :) 

I  0   -fAt^ 
B. = I - A. li-ci+(i i       -   -  t fAt   o 

s - • 
: 
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n ' Atf v. 

('     "'I ^v? + Atf u  ./ 

where 

U 
APi ♦ Ap.+1 

♦ m  
qi AtCKvP)V^ 

APi+l 
+ APi 

U 
APi * APi-i APi ♦ APi.i 

and I  is the identity matrix. 

All of these systems of equations can be solved 

readily by Gaussian elimination.  Taking advantage of the tri- 

diagonal form of the equations, the solution algorithm re- 

duces to evaluation of coefficients recursively in one forward 

and one backward sweep through the mesh.  The algorithm for 
fE12) 

vector equations is discussed by Richtmyer and Morton.v  ' 

E.5 BOUNDARY VALUES 

The calculational region extends from the ground, where 

the pressure has the assumed ground level hydrostatic value, to 

E13 
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an arbitrary altitude having a specified pressure.  Boundary 

conditions are required at  the top and bottom of the mesh to 

close the system of equations.  We have not investigated these 

conditions carefully (they will be affected further by the 

radiative treatment at the ground), but are using the follow- 

ing set: At the ground level the velocity is zero, correspond- 

ing to the viscous boundary condition, the temperature has a 

specified yalue, and the relative humidity is given the satura- 

tion value corresponding to the ground temperature. At the 

top of the mesh the velocity takes the geostrophic value and 

temperature and humidity are specified. 

< 
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